TDIP: Tunable Deep Image Processing, a Real Time Melt Pool Monitoring Solution
- URL: http://arxiv.org/abs/2403.18117v1
- Date: Tue, 26 Mar 2024 21:47:24 GMT
- Title: TDIP: Tunable Deep Image Processing, a Real Time Melt Pool Monitoring Solution
- Authors: Javid Akhavan, Youmna Mahmoud, Ke Xu, Jiaqi Lyu, Souran Manoochehri,
- Abstract summary: Melt Pool (MP) signatures during the fabrication process contain crucial information about process dynamics and quality.
To obtain this information, various sensory approaches, such as high-speed cameras-based vision modules are employed for online fabrication monitoring.
This article proposes the implementation of a Tunable Deep Image Processing (TDIP) method to address the data-rich monitoring needs in real-time.
- Score: 3.7654908672182072
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the era of Industry 4.0, Additive Manufacturing (AM), particularly metal AM, has emerged as a significant contributor due to its innovative and cost-effective approach to fabricate highly intricate geometries. Despite its potential, this industry still lacks real-time capable process monitoring algorithms. Recent advancements in this field suggest that Melt Pool (MP) signatures during the fabrication process contain crucial information about process dynamics and quality. To obtain this information, various sensory approaches, such as high-speed cameras-based vision modules are employed for online fabrication monitoring. However, many conventional in-depth analyses still cannot process all the recorded data simultaneously. Although conventional Image Processing (ImP) solutions provide a targeted tunable approach, they pose a trade-off between convergence certainty and convergence speed. As a result, conventional methods are not suitable for a dynamically changing application like MP monitoring. Therefore, this article proposes the implementation of a Tunable Deep Image Processing (TDIP) method to address the data-rich monitoring needs in real-time. The proposed model is first trained to replicate an ImP algorithm with tunable features and methodology. The TDIP model is then further improved to account for MP geometries and fabrication quality based on the vision input and process parameters. The TDIP model achieved over 94% estimation accuracy with more than 96% R2 score for quality, geometry, and MP signature estimation and isolation. The TDIP model can process 500 images per second, while conventional methods taking a few minutes per image. This significant processing time reduction enables the integration of vision-based monitoring in real-time for processes and quality estimation.
Related papers
- MMAR: Towards Lossless Multi-Modal Auto-Regressive Probabilistic Modeling [64.09238330331195]
We propose a novel Multi-Modal Auto-Regressive (MMAR) probabilistic modeling framework.
Unlike discretization line of method, MMAR takes in continuous-valued image tokens to avoid information loss.
We show that MMAR demonstrates much more superior performance than other joint multi-modal models.
arXiv Detail & Related papers (2024-10-14T17:57:18Z) - Investigation on domain adaptation of additive manufacturing monitoring systems to enhance digital twin reusability [12.425166883814153]
Digital twin (DT) using machine learning (ML)-based modeling can be deployed for AM process monitoring and control.
Melt pool is one of the most commonly observed physical phenomena for process monitoring.
This paper proposes a knowledge transfer pipeline between different AM settings to enhance the reusability of AM DTs.
arXiv Detail & Related papers (2024-09-19T13:54:01Z) - Batch-FPM: Random batch-update multi-parameter physical Fourier ptychography neural network [0.933064392528114]
Fourier Ptychographic Microscopy (FPM) is a computational imaging technique that enables high-resolution imaging over a large field of view.
We propose a fast and robust FPM reconstruction method based on physical neural networks with batch update gradient descent (SGD) optimization strategy.
Our method has better convergence performance even for low signal-to-noise ratio data sets, such as low exposure time dark-field images.
arXiv Detail & Related papers (2024-08-25T09:24:18Z) - Binocular Model: A deep learning solution for online melt pool temperature analysis using dual-wavelength Imaging Pyrometry [0.0]
In metal Additive Manufacturing (AM), monitoring the temperature of the Melt Pool (MP) is crucial for ensuring part quality, process stability, defect prevention, and overall process optimization.
Traditional methods, are slow to converge and require extensive manual effort to translate data into actionable insights.
We propose an Artificial Intelligence (AI)-based solution aimed at reducing manual data processing reliance.
arXiv Detail & Related papers (2024-08-20T18:26:09Z) - Sparse Attention-driven Quality Prediction for Production Process Optimization in Digital Twins [53.70191138561039]
We propose to deploy a digital twin of the production line by encoding its operational logic in a data-driven approach.
We adopt a quality prediction model for production process based on self-attention-enabled temporal convolutional neural networks.
Our operation experiments on a specific tobacco shredding line demonstrate that the proposed digital twin-based production process optimization method fosters seamless integration between virtual and real production lines.
arXiv Detail & Related papers (2024-05-20T09:28:23Z) - Accelerating Diffusion Sampling with Optimized Time Steps [69.21208434350567]
Diffusion probabilistic models (DPMs) have shown remarkable performance in high-resolution image synthesis.
Their sampling efficiency is still to be desired due to the typically large number of sampling steps.
Recent advancements in high-order numerical ODE solvers for DPMs have enabled the generation of high-quality images with much fewer sampling steps.
arXiv Detail & Related papers (2024-02-27T10:13:30Z) - Image Inpainting via Tractable Steering of Diffusion Models [54.13818673257381]
This paper proposes to exploit the ability of Tractable Probabilistic Models (TPMs) to exactly and efficiently compute the constrained posterior.
Specifically, this paper adopts a class of expressive TPMs termed Probabilistic Circuits (PCs)
We show that our approach can consistently improve the overall quality and semantic coherence of inpainted images with only 10% additional computational overhead.
arXiv Detail & Related papers (2023-11-28T21:14:02Z) - Tool Wear Segmentation in Blanking Processes with Fully Convolutional
Networks based Digital Image Processing [0.0]
This paper shows how high-resolution images of tools at 600 spm can be captured and processed using semantic segmentation deep learning algorithms.
125,000 images of the tool are taken from successive strokes, and microscope images are captured to investigate the worn surfaces.
arXiv Detail & Related papers (2023-10-06T11:40:16Z) - Pixel-Inconsistency Modeling for Image Manipulation Localization [59.968362815126326]
Digital image forensics plays a crucial role in image authentication and manipulation localization.
This paper presents a generalized and robust manipulation localization model through the analysis of pixel inconsistency artifacts.
Experiments show that our method successfully extracts inherent pixel-inconsistency forgery fingerprints.
arXiv Detail & Related papers (2023-09-30T02:54:51Z) - GDIP: Gated Differentiable Image Processing for Object-Detection in
Adverse Conditions [15.327704761260131]
We present a Gated Differentiable Image Processing (GDIP) block, a domain-agnostic network architecture.
Our proposed GDIP block learns to enhance images directly through the downstream object detection loss.
We demonstrate significant improvement in detection performance over several state-of-the-art methods.
arXiv Detail & Related papers (2022-09-29T16:43:13Z) - DeepRM: Deep Recurrent Matching for 6D Pose Refinement [77.34726150561087]
DeepRM is a novel recurrent network architecture for 6D pose refinement.
The architecture incorporates LSTM units to propagate information through each refinement step.
DeepRM achieves state-of-the-art performance on two widely accepted challenging datasets.
arXiv Detail & Related papers (2022-05-28T16:18:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.