Investigation on domain adaptation of additive manufacturing monitoring systems to enhance digital twin reusability
- URL: http://arxiv.org/abs/2409.12785v2
- Date: Fri, 20 Sep 2024 04:29:23 GMT
- Title: Investigation on domain adaptation of additive manufacturing monitoring systems to enhance digital twin reusability
- Authors: Jiarui Xie, Zhuo Yang, Chun-Chun Hu, Haw-Ching Yang, Yan Lu, Yaoyao Fiona Zhao,
- Abstract summary: Digital twin (DT) using machine learning (ML)-based modeling can be deployed for AM process monitoring and control.
Melt pool is one of the most commonly observed physical phenomena for process monitoring.
This paper proposes a knowledge transfer pipeline between different AM settings to enhance the reusability of AM DTs.
- Score: 12.425166883814153
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Powder bed fusion (PBF) is an emerging metal additive manufacturing (AM) technology that enables rapid fabrication of complex geometries. However, defects such as pores and balling may occur and lead to structural unconformities, thus compromising the mechanical performance of the part. This has become a critical challenge for quality assurance as the nature of some defects is stochastic during the process and invisible from the exterior. To address this issue, digital twin (DT) using machine learning (ML)-based modeling can be deployed for AM process monitoring and control. Melt pool is one of the most commonly observed physical phenomena for process monitoring, usually by high-speed cameras. Once labeled and preprocessed, the melt pool images are used to train ML-based models for DT applications such as process anomaly detection and print quality evaluation. Nonetheless, the reusability of DTs is restricted due to the wide variability of AM settings, including AM machines and monitoring instruments. The performance of the ML models trained using the dataset collected from one setting is usually compromised when applied to other settings. This paper proposes a knowledge transfer pipeline between different AM settings to enhance the reusability of AM DTs. The source and target datasets are collected from the National Institute of Standards and Technology and National Cheng Kung University with different cameras, materials, AM machines, and process parameters. The proposed pipeline consists of four steps: data preprocessing, data augmentation, domain alignment, and decision alignment. Compared with the model trained only using the source dataset, this pipeline increased the melt pool anomaly detection accuracy by 31% without any labeled training data from the target dataset.
Related papers
- Scalable AI Framework for Defect Detection in Metal Additive Manufacturing [2.303463009749888]
We leverage convolutional neural networks (CNN) to analyze thermal images of printed layers, automatically identifying anomalies that impact these properties.
Our work integrates these models in the CLoud ADditive MAnufacturing (CLADMA) module to enhance their accessibility and practicality for AM applications.
arXiv Detail & Related papers (2024-11-01T18:17:59Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference.
Our framework leads to a family of three novel objectives that are all simulation-free, and thus scalable.
We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.
arXiv Detail & Related papers (2024-10-10T17:18:30Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Deep Neural Operator Enabled Digital Twin Modeling for Additive Manufacturing [9.639126204112937]
A digital twin (DT) behaves as a virtual twin of the real-world physical process.
We present a deep neural operator enabled computational framework of the DT for closed-loop feedback control of the L-PBF process.
The developed DT is envisioned to guide the AM process and facilitate high-quality manufacturing.
arXiv Detail & Related papers (2024-05-13T03:53:46Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Statistical Parameterized Physics-Based Machine Learning Digital Twin
Models for Laser Powder Bed Fusion Process [9.182594748320948]
A digital twin (DT) is a virtual representation of physical process, products and/or systems.
This paper introduces a parameterized physics-based digital twin (PPB-DT) for the statistical predictions of LPBF metal additive manufacturing process.
We have trained a machine learning-based digital twin (PPB-ML-DT) model for predicting, monitoring, and controlling melt pool geometries.
arXiv Detail & Related papers (2023-11-14T00:45:53Z) - Predictive Maintenance Model Based on Anomaly Detection in Induction
Motors: A Machine Learning Approach Using Real-Time IoT Data [0.0]
In this work, we demonstrate a novel anomaly detection system on induction motors used in pumps, compressors, fans, and other industrial machines.
We use a combination of pre-processing techniques and machine learning (ML) models with a low computational cost.
arXiv Detail & Related papers (2023-10-15T18:43:45Z) - Defect Classification in Additive Manufacturing Using CNN-Based Vision
Processing [76.72662577101988]
This paper examines two scenarios: first, using convolutional neural networks (CNNs) to accurately classify defects in an image dataset from AM and second, applying active learning techniques to the developed classification model.
This allows the construction of a human-in-the-loop mechanism to reduce the size of the data required to train and generate training data.
arXiv Detail & Related papers (2023-07-14T14:36:58Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Comprehensive process-molten pool relations modeling using CNN for
wire-feed laser additive manufacturing [14.092644790436635]
Wire-feed laser additive manufacturing (WLAM) is gaining wide interest due to its high level of automation, high deposition rates, and good quality of printed parts.
In-process monitoring and feedback controls that would reduce the uncertainty in the quality of the material are in the early stages of development.
This paper analyzes experimentally collected in situ sensing data from the molten pool under a set of controlled process parameters in a WLAM system.
arXiv Detail & Related papers (2021-03-22T05:27:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.