HealthGAT: Node Classifications in Electronic Health Records using Graph Attention Networks
- URL: http://arxiv.org/abs/2403.18128v1
- Date: Tue, 26 Mar 2024 22:17:01 GMT
- Title: HealthGAT: Node Classifications in Electronic Health Records using Graph Attention Networks
- Authors: Fahmida Liza Piya, Mehak Gupta, Rahmatollah Beheshti,
- Abstract summary: HealthGAT is a graph attention network framework that generates embeddings from EHR.
Our model iteratively refines the embeddings for medical codes, resulting in improved EHR data analysis.
Our model shows outstanding performance in node classification and downstream tasks such as predicting readmissions and diagnosis classifications.
- Score: 2.2026317523029193
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While electronic health records (EHRs) are widely used across various applications in healthcare, most applications use the EHRs in their raw (tabular) format. Relying on raw or simple data pre-processing can greatly limit the performance or even applicability of downstream tasks using EHRs. To address this challenge, we present HealthGAT, a novel graph attention network framework that utilizes a hierarchical approach to generate embeddings from EHR, surpassing traditional graph-based methods. Our model iteratively refines the embeddings for medical codes, resulting in improved EHR data analysis. We also introduce customized EHR-centric auxiliary pre-training tasks to leverage the rich medical knowledge embedded within the data. This approach provides a comprehensive analysis of complex medical relationships and offers significant advancement over standard data representation techniques. HealthGAT has demonstrated its effectiveness in various healthcare scenarios through comprehensive evaluations against established methodologies. Specifically, our model shows outstanding performance in node classification and downstream tasks such as predicting readmissions and diagnosis classifications. Our code is available at https://github.com/healthylaife/HealthGAT
Related papers
- Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Fairness-Optimized Synthetic EHR Generation for Arbitrary Downstream Predictive Tasks [2.089191490381739]
We present a new pipeline that generates synthetic EHR data consistent with (faithful to) the real EHR data.
We demonstrate the effectiveness of our proposed pipeline across various downstream tasks and two different EHR datasets.
Our proposed pipeline can add a widely applicable and complementary tool to the existing toolbox of methods to address fairness in health AI applications.
arXiv Detail & Related papers (2024-06-04T17:29:21Z) - Guided Discrete Diffusion for Electronic Health Record Generation [47.129056768385084]
EHRs are a pivotal data source that enables numerous applications in computational medicine, e.g., disease progression prediction, clinical trial design, and health economics and outcomes research.
Despite wide usability, their sensitive nature raises privacy and confidentially concerns, which limit potential use cases.
To tackle these challenges, we explore the use of generative models to synthesize artificial, yet realistic EHRs.
arXiv Detail & Related papers (2024-04-18T16:50:46Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - Next Visit Diagnosis Prediction via Medical Code-Centric Multimodal Contrastive EHR Modelling with Hierarchical Regularisation [0.0]
We propose NECHO, a novel medical code-centric multimodal contrastive EHR learning framework with hierarchical regularisation.
First, we integrate multifaceted information encompassing medical codes, demographics, and clinical notes using a tailored network design.
We also regularise modality-specific encoders using a parental level information in medical ontology to learn hierarchical structure of EHR data.
arXiv Detail & Related papers (2024-01-22T01:58:32Z) - Rediscovery of CNN's Versatility for Text-based Encoding of Raw
Electronic Health Records [22.203204279166496]
We search for a versatile encoder not only reducing the large data into a manageable size but also well preserving the core information of patients to perform diverse clinical tasks.
We found that hierarchically structured Convolutional Neural Network (CNN) often outperforms the state-of-the-art model on diverse tasks.
arXiv Detail & Related papers (2023-03-15T00:37:18Z) - Modeling electronic health record data using a knowledge-graph-embedded
topic model [6.170782354287972]
We present KG-ETM, an end-to-end knowledge graph-based multimodal embedded topic model.
KG-ETM distills latent disease topics from EHR data by learning the embedding from the medical knowledge graphs.
Our model is also able to discover interpretable and accurate patient representations for patient stratification and drug recommendations.
arXiv Detail & Related papers (2022-06-03T07:58:17Z) - Self-Supervised Graph Learning with Hyperbolic Embedding for Temporal
Health Event Prediction [13.24834156675212]
We propose a hyperbolic embedding method with information flow to pre-train medical code representations in a hierarchical structure.
We incorporate these pre-trained representations into a graph neural network to detect disease complications.
We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data.
arXiv Detail & Related papers (2021-06-09T00:42:44Z) - Heterogeneous Similarity Graph Neural Network on Electronic Health
Records [74.66674469510251]
We propose Heterogeneous Similarity Graph Neural Network (HSGNN) to analyze EHRs with a novel heterogeneous GNN.
Our framework consists of two parts: one is a preprocessing method and the other is an end-to-end GNN.
The GNN takes all homogeneous graphs as input and fuses all of them into one graph to make a prediction.
arXiv Detail & Related papers (2021-01-17T23:14:29Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.