論文の概要: HERTA: A High-Efficiency and Rigorous Training Algorithm for Unfolded Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2403.18142v1
- Date: Tue, 26 Mar 2024 23:03:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 18:55:29.780956
- Title: HERTA: A High-Efficiency and Rigorous Training Algorithm for Unfolded Graph Neural Networks
- Title(参考訳): HERTA: グラフニューラルネットワークの高効率かつ厳密なトレーニングアルゴリズム
- Authors: Yongyi Yang, Jiaming Yang, Wei Hu, Michał Dereziński,
- Abstract要約: HERTAは、Unfolded GNNの高効率で厳格なトレーニングアルゴリズムである。
HERTAは元のモデルの最適値に収束し、アンフォールドGNNの解釈可能性を維持する。
HERTAの副産物として、正規化および正規化グラフラプラシアンに適用可能な新しいスペクトルスカラー化法を提案する。
- 参考スコア(独自算出の注目度): 14.139047596566485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As a variant of Graph Neural Networks (GNNs), Unfolded GNNs offer enhanced interpretability and flexibility over traditional designs. Nevertheless, they still suffer from scalability challenges when it comes to the training cost. Although many methods have been proposed to address the scalability issues, they mostly focus on per-iteration efficiency, without worst-case convergence guarantees. Moreover, those methods typically add components to or modify the original model, thus possibly breaking the interpretability of Unfolded GNNs. In this paper, we propose HERTA: a High-Efficiency and Rigorous Training Algorithm for Unfolded GNNs that accelerates the whole training process, achieving a nearly-linear time worst-case training guarantee. Crucially, HERTA converges to the optimum of the original model, thus preserving the interpretability of Unfolded GNNs. Additionally, as a byproduct of HERTA, we propose a new spectral sparsification method applicable to normalized and regularized graph Laplacians that ensures tighter bounds for our algorithm than existing spectral sparsifiers do. Experiments on real-world datasets verify the superiority of HERTA as well as its adaptability to various loss functions and optimizers.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)の亜種として、Unfolded GNNは従来の設計よりも高い解釈性と柔軟性を提供する。
それでも、トレーニングコストに関しては、スケーラビリティ上の課題に悩まされている。
スケーラビリティ問題に対処する多くの手法が提案されているが、それらは最悪の収束保証なしに、解法ごとの効率に主に焦点をあてている。
さらに、これらのメソッドは、通常、元のモデルにコンポーネントを追加または変更するので、Unfolded GNNの解釈性を損なう可能性がある。
本稿では,HERTA: A High-Efficiency and Rigorous Training Algorithm for Unfolded GNNsを提案する。
重要なことに、HERTAは元のモデルの最適値に収束し、アンフォールドGNNの解釈可能性を維持する。
さらに、HERTAの副産物として、既存のスペクトルスペーサーよりもアルゴリズムの厳密な境界を保証する正規化および正規化グラフラプラシアンに適用可能な新しいスペクトルスペーサー法を提案する。
実世界のデータセットの実験は、HERTAの優位性と、様々な損失関数やオプティマイザへの適応性を検証する。
関連論文リスト
- Heuristic Learning with Graph Neural Networks: A Unified Framework for Link Prediction [25.87108956561691]
リンク予測はグラフ学習における基本的なタスクであり、本質的にグラフのトポロジーによって形作られる。
種々の重みを適応・一般化するための統一行列定式化を提案する。
また,この定式化を効率的に実装するためのHuristic Learning Graph Neural Network (HL-GNN)を提案する。
論文 参考訳(メタデータ) (2024-06-12T08:05:45Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
グラフニューラルネットワーク(GNN)は、グラフタスクに対して有望な結果を示す。
既存のGNNの一般化能力は、テストとトレーニンググラフデータの間に分散シフトが存在する場合に低下する。
本稿では,分布外一般化能力を大幅に向上させる非線形グラフデコリレーション法を提案する。
論文 参考訳(メタデータ) (2023-12-19T12:25:10Z) - Achieving Constraints in Neural Networks: A Stochastic Augmented
Lagrangian Approach [49.1574468325115]
DNN(Deep Neural Networks)の正規化は、一般化性の向上とオーバーフィッティングの防止に不可欠である。
制約付き最適化問題としてトレーニングプロセスのフレーミングによるDNN正規化に対する新しいアプローチを提案する。
我々はAugmented Lagrangian (SAL) 法を用いて、より柔軟で効率的な正規化機構を実現する。
論文 参考訳(メタデータ) (2023-10-25T13:55:35Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - GNN-Ensemble: Towards Random Decision Graph Neural Networks [3.7620848582312405]
グラフニューラルネットワーク(GNN)は、グラフ構造化データに広く応用されている。
GNNは、大量のテストデータに基づいて推論を行うために、限られた量のトレーニングデータから潜伏パターンを学習する必要がある。
本稿では、GNNのアンサンブル学習を一歩前進させ、精度、堅牢性、敵攻撃を改善した。
論文 参考訳(メタデータ) (2023-03-20T18:24:01Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから実際に学習する上で、近年大きな進歩を遂げている。
回帰問題と二項分類問題の両方に隠れ層を持つGNNの理論的に基底的な一般化可能性解析を行う。
論文 参考訳(メタデータ) (2020-06-25T00:45:52Z) - Optimization and Generalization Analysis of Transduction through
Gradient Boosting and Application to Multi-scale Graph Neural Networks [60.22494363676747]
現在のグラフニューラルネットワーク(GNN)は、オーバースムーシング(over-smoothing)と呼ばれる問題のため、自分自身を深くするのは難しいことが知られている。
マルチスケールGNNは、オーバースムーシング問題を緩和するための有望なアプローチである。
マルチスケールGNNを含むトランスダクティブ学習アルゴリズムの最適化と一般化を保証する。
論文 参考訳(メタデータ) (2020-06-15T17:06:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。