論文の概要: Heuristic Learning with Graph Neural Networks: A Unified Framework for Link Prediction
- arxiv url: http://arxiv.org/abs/2406.07979v2
- Date: Fri, 14 Jun 2024 10:06:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 18:03:47.131248
- Title: Heuristic Learning with Graph Neural Networks: A Unified Framework for Link Prediction
- Title(参考訳): グラフニューラルネットワークによるヒューリスティック学習:リンク予測のための統一フレームワーク
- Authors: Juzheng Zhang, Lanning Wei, Zhen Xu, Quanming Yao,
- Abstract要約: リンク予測はグラフ学習における基本的なタスクであり、本質的にグラフのトポロジーによって形作られる。
種々の重みを適応・一般化するための統一行列定式化を提案する。
また,この定式化を効率的に実装するためのHuristic Learning Graph Neural Network (HL-GNN)を提案する。
- 参考スコア(独自算出の注目度): 25.87108956561691
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Link prediction is a fundamental task in graph learning, inherently shaped by the topology of the graph. While traditional heuristics are grounded in graph topology, they encounter challenges in generalizing across diverse graphs. Recent research efforts have aimed to leverage the potential of heuristics, yet a unified formulation accommodating both local and global heuristics remains undiscovered. Drawing insights from the fact that both local and global heuristics can be represented by adjacency matrix multiplications, we propose a unified matrix formulation to accommodate and generalize various heuristics. We further propose the Heuristic Learning Graph Neural Network (HL-GNN) to efficiently implement the formulation. HL-GNN adopts intra-layer propagation and inter-layer connections, allowing it to reach a depth of around 20 layers with lower time complexity than GCN. Extensive experiments on the Planetoid, Amazon, and OGB datasets underscore the effectiveness and efficiency of HL-GNN. It outperforms existing methods by a large margin in prediction performance. Additionally, HL-GNN is several orders of magnitude faster than heuristic-inspired methods while requiring only a few trainable parameters. The case study further demonstrates that the generalized heuristics and learned weights are highly interpretable.
- Abstract(参考訳): リンク予測はグラフ学習における基本的なタスクであり、本質的にグラフのトポロジーによって形作られる。
従来のヒューリスティックはグラフトポロジに根ざしているが、様々なグラフをまたいだ一般化の難しさに直面する。
近年の研究はヒューリスティックスの可能性を活用することを目的としているが、地域とグローバルなヒューリスティックスを併せ持つ統一的な定式化は未発見のままである。
局所的および大域的ヒューリスティックスの両方を隣接行列乗法で表すことができるという事実から洞察を導き,様々なヒューリスティックスに対応・一般化するための統一行列定式化を提案する。
さらに,この定式化を効率的に実装するためのHuristic Learning Graph Neural Network (HL-GNN)を提案する。
HL-GNNは層間伝播と層間接続を採用しており、GCNよりも低時間で約20層の深さに達することができる。
Planetoid、Amazon、OGBデータセットに関する大規模な実験は、HL-GNNの有効性と効率性を示している。
予測性能の大きな差で既存の手法を上回ります。
加えて、HL-GNNはヒューリスティックにインスパイアされた手法よりも数桁高速であり、訓練可能なパラメータはわずかである。
このケーススタディは、一般化されたヒューリスティックスと学習されたウェイトが極めて解釈可能であることを示す。
関連論文リスト
- Efficient Heterogeneous Graph Learning via Random Projection [65.65132884606072]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - How Graph Neural Networks Learn: Lessons from Training Dynamics [80.41778059014393]
グラフニューラルネットワーク(GNN)の関数空間におけるトレーニングダイナミクスについて検討する。
GNNの勾配勾配勾配最適化は暗黙的にグラフ構造を利用して学習関数を更新する。
この発見は、学習したGNN関数が一般化した時期と理由に関する新たな解釈可能な洞察を提供する。
論文 参考訳(メタデータ) (2023-10-08T10:19:56Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - Efficient and effective training of language and graph neural network
models [36.00479096375565]
我々は,大規模言語モデルとグラフニューラルネットワークを協調的に学習する,効率的な言語モデルGNN(LM-GNN)を提案する。
本フレームワークの有効性は、BERTモデルの段階的微調整をまず異種グラフ情報に適用し、次にGNNモデルを用いて達成する。
我々は,LM-GNNフレームワークを異なるデータセットの性能で評価し,提案手法の有効性を示す。
論文 参考訳(メタデータ) (2022-06-22T00:23:37Z) - Tackling Oversmoothing of GNNs with Contrastive Learning [35.88575306925201]
グラフニューラルネットワーク(GNN)は、グラフデータと表現学習能力の包括的な関係を統合する。
オーバースムーシングはノードの最終的な表現を識別不能にし、ノード分類とリンク予測性能を劣化させる。
本稿では,TGCL(Topology-Guided Graph Contrastive Layer)を提案する。
論文 参考訳(メタデータ) (2021-10-26T15:56:16Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから実際に学習する上で、近年大きな進歩を遂げている。
回帰問題と二項分類問題の両方に隠れ層を持つGNNの理論的に基底的な一般化可能性解析を行う。
論文 参考訳(メタデータ) (2020-06-25T00:45:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。