論文の概要: Preference-Based Planning in Stochastic Environments: From Partially-Ordered Temporal Goals to Most Preferred Policies
- arxiv url: http://arxiv.org/abs/2403.18212v2
- Date: Fri, 18 Oct 2024 03:50:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:22:01.685749
- Title: Preference-Based Planning in Stochastic Environments: From Partially-Ordered Temporal Goals to Most Preferred Policies
- Title(参考訳): 確率的環境における優先的計画--部分的に順序付けられた時間的目標から最も優先される政策へ
- Authors: Hazhar Rahmani, Abhishek N. Kulkarni, Jie Fu,
- Abstract要約: マルコフ決定過程としてモデル化されたシステムは、時間的に拡張された一連の目標に対して部分的に順序づけられた選好を考慮に入れている。
部分的に順序づけられた選好を計画するために、時間的目標に対する選好をMDPの政策に対する選好にマッピングする順序理論を導入する。
順序付けの下で最も好まれるポリシーは、MDP内の有限経路上の非支配確率分布を誘導する。
- 参考スコア(独自算出の注目度): 25.731912021122287
- License:
- Abstract: Human preferences are not always represented via complete linear orders: It is natural to employ partially-ordered preferences for expressing incomparable outcomes. In this work, we consider decision-making and probabilistic planning in stochastic systems modeled as Markov decision processes (MDPs), given a partially ordered preference over a set of temporally extended goals. Specifically, each temporally extended goal is expressed using a formula in Linear Temporal Logic on Finite Traces (LTL$_f$). To plan with the partially ordered preference, we introduce order theory to map a preference over temporal goals to a preference over policies for the MDP. Accordingly, a most preferred policy under a stochastic ordering induces a stochastic nondominated probability distribution over the finite paths in the MDP. To synthesize a most preferred policy, our technical approach includes two key steps. In the first step, we develop a procedure to transform a partially ordered preference over temporal goals into a computational model, called preference automaton, which is a semi-automaton with a partial order over acceptance conditions. In the second step, we prove that finding a most preferred policy is equivalent to computing a Pareto-optimal policy in a multi-objective MDP that is constructed from the original MDP, the preference automaton, and the chosen stochastic ordering relation. Throughout the paper, we employ running examples to illustrate the proposed preference specification and solution approaches. We demonstrate the efficacy of our algorithm using these examples, providing detailed analysis, and then discuss several potential future directions.
- Abstract(参考訳): 人間の嗜好は必ずしも完全な線形順序で表されるわけではない: 相容れない結果を表現するために部分的に順序付けされた選好を採用するのは自然である。
本研究では,マルコフ決定過程(MDP)をモデル化した確率的システムにおける意思決定と確率的計画について考察する。
具体的には、各時間拡張ゴールは、有限トレース上の線形時間論理(LTL$_f$)の式で表される。
部分的に順序づけられた選好を計画するために、時間的目標に対する選好をMDPの政策に対する選好にマッピングする順序理論を導入する。
したがって、確率順序付けの下で最も好まれるポリシーは、MDP内の有限経路上の確率的非支配確率分布を誘導する。
最も好まれるポリシーを合成するために、我々の技術的アプローチは2つの重要なステップを含む。
最初のステップでは、時間的目標に対する部分的に順序づけられた嗜好を、部分的に順序づけられた半オートマトンである選好オートマトンと呼ばれる計算モデルに変換する手順を開発する。
2番目のステップでは、最も好まれるポリシーを見つけることは、元のMDP、選好オートマトン、選択された確率順序関係から構築された多目的MDPにおけるパレート最適ポリシーの計算と等価であることを示す。
論文全体を通して、提案した選好仕様とソリューションアプローチを説明するために、実行中の例を用いている。
これらの例を用いてアルゴリズムの有効性を実証し、詳細な分析を行い、将来の可能性について検討する。
関連論文リスト
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
まず最適化モデルを構築し,非単調な選好をモデル化する。
本稿では,情報量測定手法と質問選択戦略を考案し,各イテレーションにおいて最も情報に富む選択肢を特定する。
2つのインクリメンタルな選好に基づくアルゴリズムは、潜在的に単調な選好を学習するために開発された。
論文 参考訳(メタデータ) (2024-09-04T14:36:20Z) - Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs [82.34567890576423]
我々は,非漸近収束を伴う最適決定主義政策を求めるための決定主義的政策勾配原始双対法を開発した。
D-PGPDの一次-双対反復は、最適正則化原始-双対にサブ線形速度で収束することが証明された。
我々の知る限り、これは連続空間制約型MDPに対する決定論的ポリシー探索法を提案する最初の研究であると思われる。
論文 参考訳(メタデータ) (2024-08-19T14:11:04Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
政策勾配法(PG法)は連続強化学習(RL法)問題に対処する手法として成功している。
一般的には、収束(ハイパー)政治は、決定論的バージョンをデプロイするためにのみ学習される。
本稿では,サンプルの複雑性とデプロイされた決定論的ポリシのパフォーマンスのトレードオフを最適化するために,学習に使用する探索レベルの調整方法を示す。
論文 参考訳(メタデータ) (2024-05-03T16:45:15Z) - Efficient Global Planning in Large MDPs via Stochastic Primal-Dual
Optimization [12.411844611718958]
提案手法は, 生成モデルに対する多数のクエリの後に, ほぼ最適ポリシーを出力することを示す。
提案手法は計算効率が高く,低次元パラメータベクトルでコンパクトに表現される単一のソフトマックスポリシーを出力する点が大きな利点である。
論文 参考訳(メタデータ) (2022-10-21T15:49:20Z) - Probabilistic Planning with Partially Ordered Preferences over Temporal
Goals [22.77805882908817]
マルコフ決定過程(MDP)における計画計画について,時間的拡張目標よりも優先的に検討した。
本稿では、時間的に拡張された目標に対するユーザの好みを特定するために、決定論的有限オートマトンの一種である選好DFAを導入する。
構築された多目的MDPにおいて、選好仕様を前提とした弱確率的非支配ポリシーが最適であることを示す。
論文 参考訳(メタデータ) (2022-09-25T17:13:24Z) - First-order Policy Optimization for Robust Markov Decision Process [40.2022466644885]
我々はロバストマルコフ決定過程(MDP)の解法を考える。
MDPは、不確実な遷移カーネルを持つ割引状態、有限状態、有限作用空間 MDP の集合を含む。
$(mathbfs,mathbfa)$-矩形不確かさ集合に対して、ロバストな目的に関するいくつかの構造的な観察を確立する。
論文 参考訳(メタデータ) (2022-09-21T18:10:28Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
本稿では, PPOアルゴリズムの簡単な拡張により, TMDPにおけるポリシー勾配に対する新しいアルゴリズムを提案する。
シミュレーションと実ロボットの両方の目的を任意に並べた実世界の多目的ナビゲーション問題に対して,これを実証する。
論文 参考訳(メタデータ) (2022-09-15T07:22:58Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
我々は、強化学習を通して解決された逐次決定問題(MDP)の文脈における予測列最適化フレームワークについて検討した。
2つの重要な計算課題は、意思決定中心の学習をMDPに適用することである。
論文 参考訳(メタデータ) (2021-06-06T23:53:31Z) - Probabilistic Planning with Preferences over Temporal Goals [21.35365462532568]
本稿では,時間目標に対する質的選好を規定する形式言語と,システムにおける選好に基づく計画手法を提案する。
自動理論モデルを用いて,提案した仕様は,各結果がサブゴールの時間列の集合を記述する場合の,異なる結果集合に対する嗜好を表現することができる。
我々は,可能な結果以上のプロセスが与えられた場合の選好満足度の価値を定義し,ラベル付きマルコフ決定過程における時間制約付き確率計画のためのアルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-03-26T14:26:40Z) - Modular Deep Reinforcement Learning for Continuous Motion Planning with
Temporal Logic [59.94347858883343]
本稿では,マルコフ決定過程(MDP)をモデルとした自律動的システムの運動計画について検討する。
LDGBA と MDP の間に組込み製品 MDP (EP-MDP) を設計することである。
モデルフリー強化学習(RL)のためのLDGBAベースの報酬形成と割引スキームは、EP-MDP状態にのみ依存する。
論文 参考訳(メタデータ) (2021-02-24T01:11:25Z) - Strengthening Deterministic Policies for POMDPs [5.092711491848192]
我々は、時間論理制約の形で洗練された仕様をサポートする新しいMILP符号化を提供する。
我々は、メモリベースの決定を包含するために、POMDPの事前処理を採用する。
提案手法の利点は, 計算的トラクタビリティを損なうことなく, 簡単な決定論的政策を強化する柔軟性と, 任意に多くの仕様の証明可能な満足度を強制する能力である。
論文 参考訳(メタデータ) (2020-07-16T14:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。