Preference-Based Planning in Stochastic Environments: From Partially-Ordered Temporal Goals to Most Preferred Policies
- URL: http://arxiv.org/abs/2403.18212v2
- Date: Fri, 18 Oct 2024 03:50:57 GMT
- Title: Preference-Based Planning in Stochastic Environments: From Partially-Ordered Temporal Goals to Most Preferred Policies
- Authors: Hazhar Rahmani, Abhishek N. Kulkarni, Jie Fu,
- Abstract summary: We consider systems modeled as Markov decision processes, given a partially ordered preference over a set of temporally extended goals.
To plan with the partially ordered preference, we introduce order theory to map a preference over temporal goals to a preference over policies for the MDP.
A most preferred policy under a ordering induces a nondominated probability distribution over the finite paths in the MDP.
- Score: 25.731912021122287
- License:
- Abstract: Human preferences are not always represented via complete linear orders: It is natural to employ partially-ordered preferences for expressing incomparable outcomes. In this work, we consider decision-making and probabilistic planning in stochastic systems modeled as Markov decision processes (MDPs), given a partially ordered preference over a set of temporally extended goals. Specifically, each temporally extended goal is expressed using a formula in Linear Temporal Logic on Finite Traces (LTL$_f$). To plan with the partially ordered preference, we introduce order theory to map a preference over temporal goals to a preference over policies for the MDP. Accordingly, a most preferred policy under a stochastic ordering induces a stochastic nondominated probability distribution over the finite paths in the MDP. To synthesize a most preferred policy, our technical approach includes two key steps. In the first step, we develop a procedure to transform a partially ordered preference over temporal goals into a computational model, called preference automaton, which is a semi-automaton with a partial order over acceptance conditions. In the second step, we prove that finding a most preferred policy is equivalent to computing a Pareto-optimal policy in a multi-objective MDP that is constructed from the original MDP, the preference automaton, and the chosen stochastic ordering relation. Throughout the paper, we employ running examples to illustrate the proposed preference specification and solution approaches. We demonstrate the efficacy of our algorithm using these examples, providing detailed analysis, and then discuss several potential future directions.
Related papers
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs [82.34567890576423]
We develop a deterministic policy gradient primal-dual method to find an optimal deterministic policy with non-asymptotic convergence.
We prove that the primal-dual iterates of D-PGPD converge at a sub-linear rate to an optimal regularized primal-dual pair.
To the best of our knowledge, this appears to be the first work that proposes a deterministic policy search method for continuous-space constrained MDPs.
arXiv Detail & Related papers (2024-08-19T14:11:04Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Efficient Global Planning in Large MDPs via Stochastic Primal-Dual
Optimization [12.411844611718958]
We show that our method outputs a near-optimal policy after a number of queries to the generative model.
Our method is computationally efficient and comes with the major advantage that it outputs a single softmax policy that is compactly represented by a low-dimensional parameter vector.
arXiv Detail & Related papers (2022-10-21T15:49:20Z) - Probabilistic Planning with Partially Ordered Preferences over Temporal
Goals [22.77805882908817]
We study planning in Markov decision processes (MDPs) with preferences over temporally extended goals.
We introduce a variant of deterministic finite automaton, referred to as a preference DFA, for specifying the user's preferences over temporally extended goals.
We prove that a weak-stochastic nondominated policy given the preference specification is optimal in the constructed multi-objective MDP.
arXiv Detail & Related papers (2022-09-25T17:13:24Z) - First-order Policy Optimization for Robust Markov Decision Process [40.2022466644885]
We consider the problem of solving robust Markov decision process (MDP)
MDP involves a set of discounted, finite state, finite action space MDPs with uncertain transition kernels.
For $(mathbfs,mathbfa)$-rectangular uncertainty sets, we establish several structural observations on the robust objective.
arXiv Detail & Related papers (2022-09-21T18:10:28Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
We study the predict-then-optimize framework in the context of sequential decision problems (formulated as MDPs) solved via reinforcement learning.
Two significant computational challenges arise in applying decision-focused learning to MDPs.
arXiv Detail & Related papers (2021-06-06T23:53:31Z) - Probabilistic Planning with Preferences over Temporal Goals [21.35365462532568]
We present a formal language for specifying qualitative preferences over temporal goals and a preference-based planning method in systems.
Using automata-theoretic modeling, the proposed specification allows us to express preferences over different sets of outcomes, where each outcome describes a set of temporal sequences of subgoals.
We define the value of preference satisfaction given a process over possible outcomes and develop an algorithm for time-constrained probabilistic planning in labeled Markov decision processes.
arXiv Detail & Related papers (2021-03-26T14:26:40Z) - Modular Deep Reinforcement Learning for Continuous Motion Planning with
Temporal Logic [59.94347858883343]
This paper investigates the motion planning of autonomous dynamical systems modeled by Markov decision processes (MDP)
The novelty is to design an embedded product MDP (EP-MDP) between the LDGBA and the MDP.
The proposed LDGBA-based reward shaping and discounting schemes for the model-free reinforcement learning (RL) only depend on the EP-MDP states.
arXiv Detail & Related papers (2021-02-24T01:11:25Z) - Strengthening Deterministic Policies for POMDPs [5.092711491848192]
We provide a novel MILP encoding that supports sophisticated specifications in the form of temporal logic constraints.
We employ a preprocessing of the POMDP to encompass memory-based decisions.
The advantages of our approach lie (1) in the flexibility to strengthen simple deterministic policies without losing computational tractability and (2) in the ability to enforce the provable satisfaction of arbitrarily many specifications.
arXiv Detail & Related papers (2020-07-16T14:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.