Enhancing Metaphor Detection through Soft Labels and Target Word Prediction
- URL: http://arxiv.org/abs/2403.18253v2
- Date: Tue, 9 Apr 2024 03:47:29 GMT
- Title: Enhancing Metaphor Detection through Soft Labels and Target Word Prediction
- Authors: Kaidi Jia, Rongsheng Li,
- Abstract summary: We develop a prompt learning framework specifically designed for metaphor detection.
We also introduce a teacher model to generate valuable soft labels.
Experimental results demonstrate that our model has achieved state-of-the-art performance.
- Score: 3.7676096626244986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Metaphors play a significant role in our everyday communication, yet detecting them presents a challenge. Traditional methods often struggle with improper application of language rules and a tendency to overlook data sparsity. To address these issues, we integrate knowledge distillation and prompt learning into metaphor detection. Our approach revolves around a tailored prompt learning framework specifically designed for metaphor detection. By strategically masking target words and providing relevant prompt data, we guide the model to accurately predict the contextual meanings of these words. This approach not only mitigates confusion stemming from the literal meanings of the words but also ensures effective application of language rules for metaphor detection. Furthermore, we've introduced a teacher model to generate valuable soft labels. These soft labels provide a similar effect to label smoothing and help prevent the model from becoming over confident and effectively addresses the challenge of data sparsity. Experimental results demonstrate that our model has achieved state-of-the-art performance, as evidenced by its remarkable results across various datasets.
Related papers
- What could go wrong? Discovering and describing failure modes in computer vision [27.6114923305978]
We formalize the problem of Language-Based Error Explainability (LBEE)
We propose solutions that operate in a joint vision-and-language embedding space.
We show that the proposed methodology isolates nontrivial sentences associated with specific error causes.
arXiv Detail & Related papers (2024-08-08T14:01:12Z) - Modeling Emotional Trajectories in Written Stories Utilizing Transformers and Weakly-Supervised Learning [47.02027575768659]
We introduce continuous valence and arousal labels for an existing dataset of children's stories originally annotated with discrete emotion categories.
For predicting the thus obtained emotionality signals, we fine-tune a DeBERTa model and improve upon this baseline via a weakly supervised learning approach.
A detailed analysis shows the extent to which the results vary depending on factors such as the author, the individual story, or the section within the story.
arXiv Detail & Related papers (2024-06-04T12:17:16Z) - Fine-Grained Visual Entailment [51.66881737644983]
We propose an extension of this task, where the goal is to predict the logical relationship of fine-grained knowledge elements within a piece of text to an image.
Unlike prior work, our method is inherently explainable and makes logical predictions at different levels of granularity.
We evaluate our method on a new dataset of manually annotated knowledge elements and show that our method achieves 68.18% accuracy at this challenging task.
arXiv Detail & Related papers (2022-03-29T16:09:38Z) - How Do You Do It? Fine-Grained Action Understanding with Pseudo-Adverbs [52.042261549764326]
We propose a method which recognizes adverbs across different actions.
Our approach uses semi-supervised learning with multiple adverb pseudo-labels.
We also show how adverbs can relate fine-grained actions.
arXiv Detail & Related papers (2022-03-23T11:53:41Z) - On the Impact of Temporal Representations on Metaphor Detection [1.6959319157216468]
State-of-the-art approaches for metaphor detection compare their literal - or core - meaning and their contextual meaning using sequential metaphor classifiers based on neural networks.
This study examines the metaphor detection task with a detailed exploratory analysis where different temporal and static word embeddings are used to account for different representations of literal meanings.
Results suggest that different word embeddings do impact on the metaphor detection task and some temporal word embeddings slightly outperform static methods on some performance measures.
arXiv Detail & Related papers (2021-11-05T08:43:21Z) - Transductive Learning for Unsupervised Text Style Transfer [60.65782243927698]
Unsupervised style transfer models are mainly based on an inductive learning approach.
We propose a novel transductive learning approach based on a retrieval-based context-aware style representation.
arXiv Detail & Related papers (2021-09-16T08:57:20Z) - MelBERT: Metaphor Detection via Contextualized Late Interaction using
Metaphorical Identification Theories [5.625405679356158]
We propose a novel metaphor detection model, namely metaphor-aware late interaction over BERT (MelBERT)
Our model not only leverages contextualized word representation but also benefits from linguistic metaphor identification theories to distinguish between the contextual and literal meaning of words.
arXiv Detail & Related papers (2021-04-28T07:52:01Z) - Generalized Zero-shot Intent Detection via Commonsense Knowledge [5.398580049917152]
We propose RIDE: an intent detection model that leverages commonsense knowledge in an unsupervised fashion to overcome the issue of training data scarcity.
RIDE computes robust and generalizable relationship meta-features that capture deep semantic relationships between utterances and intent labels.
Our extensive experimental analysis on three widely-used intent detection benchmarks shows that relationship meta-features significantly increase the accuracy of detecting both seen and unseen intents.
arXiv Detail & Related papers (2021-02-04T23:36:41Z) - COBE: Contextualized Object Embeddings from Narrated Instructional Video [52.73710465010274]
We propose a new framework for learning Contextualized OBject Embeddings from automatically-transcribed narrations of instructional videos.
We leverage the semantic and compositional structure of language by training a visual detector to predict a contextualized word embedding of the object and its associated narration.
Our experiments show that our detector learns to predict a rich variety of contextual object information, and that it is highly effective in the settings of few-shot and zero-shot learning.
arXiv Detail & Related papers (2020-07-14T19:04:08Z) - On Vocabulary Reliance in Scene Text Recognition [79.21737876442253]
Methods perform well on images with words within vocabulary but generalize poorly to images with words outside vocabulary.
We call this phenomenon "vocabulary reliance"
We propose a simple yet effective mutual learning strategy to allow models of two families to learn collaboratively.
arXiv Detail & Related papers (2020-05-08T11:16:58Z) - Temporal Embeddings and Transformer Models for Narrative Text
Understanding [72.88083067388155]
We present two approaches to narrative text understanding for character relationship modelling.
The temporal evolution of these relations is described by dynamic word embeddings, that are designed to learn semantic changes over time.
A supervised learning approach based on the state-of-the-art transformer model BERT is used instead to detect static relations between characters.
arXiv Detail & Related papers (2020-03-19T14:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.