Dynamic Label Name Refinement for Few-Shot Dialogue Intent Classification
- URL: http://arxiv.org/abs/2412.15603v1
- Date: Fri, 20 Dec 2024 06:53:57 GMT
- Title: Dynamic Label Name Refinement for Few-Shot Dialogue Intent Classification
- Authors: Gyutae Park, Ingeol Baek, ByeongJeong Kim, Joongbo Shin, Hwanhee Lee,
- Abstract summary: We propose a novel approach to few-shot dialogue intent classification through in-context learning.
Our method retrieves relevant examples for a test input from the training set.
We leverage a large language model to dynamically refine intent labels based on semantic understanding.
- Score: 10.850826520563967
- License:
- Abstract: Dialogue intent classification aims to identify the underlying purpose or intent of a user's input in a conversation. Current intent classification systems encounter considerable challenges, primarily due to the vast number of possible intents and the significant semantic overlap among similar intent classes. In this paper, we propose a novel approach to few-shot dialogue intent classification through in-context learning, incorporating dynamic label refinement to address these challenges. Our method retrieves relevant examples for a test input from the training set and leverages a large language model to dynamically refine intent labels based on semantic understanding, ensuring that intents are clearly distinguishable from one another. Experimental results demonstrate that our approach effectively resolves confusion between semantically similar intents, resulting in significantly enhanced performance across multiple datasets compared to baselines. We also show that our method generates more interpretable intent labels, and has a better semantic coherence in capturing underlying user intents compared to baselines.
Related papers
- Bidirectional Logits Tree: Pursuing Granularity Reconcilement in Fine-Grained Classification [89.20477310885731]
This paper addresses the challenge of Granularity Competition in fine-grained classification tasks.
Existing approaches typically develop independent hierarchy-aware models based on shared features extracted from a common base encoder.
We propose a novel framework called the Bidirectional Logits Tree (BiLT) for Granularity Reconcilement.
arXiv Detail & Related papers (2024-12-17T10:42:19Z) - Towards Unsupervised Recognition of Token-level Semantic Differences in
Related Documents [61.63208012250885]
We formulate recognizing semantic differences as a token-level regression task.
We study three unsupervised approaches that rely on a masked language model.
Our results show that an approach based on word alignment and sentence-level contrastive learning has a robust correlation to gold labels.
arXiv Detail & Related papers (2023-05-22T17:58:04Z) - Exploring Structured Semantic Prior for Multi Label Recognition with
Incomplete Labels [60.675714333081466]
Multi-label recognition (MLR) with incomplete labels is very challenging.
Recent works strive to explore the image-to-label correspondence in the vision-language model, ie, CLIP, to compensate for insufficient annotations.
We advocate remedying the deficiency of label supervision for the MLR with incomplete labels by deriving a structured semantic prior.
arXiv Detail & Related papers (2023-03-23T12:39:20Z) - New Intent Discovery with Pre-training and Contrastive Learning [21.25371293641141]
New intent discovery aims to uncover novel intent categories from user utterances to expand the set of supported intent classes.
Existing approaches typically rely on a large amount of labeled utterances.
We propose a new contrastive loss to exploit self-supervisory signals in unlabeled data for clustering.
arXiv Detail & Related papers (2022-05-25T17:07:25Z) - Exploring the Limits of Natural Language Inference Based Setup for
Few-Shot Intent Detection [13.971616443394474]
Generalized Few-shot intent detection is more realistic but challenging setup.
We employ a simple and effective method based on Natural Language Inference.
Our method achieves state-of-the-art results on 1-shot and 5-shot intent detection task.
arXiv Detail & Related papers (2021-12-14T14:47:23Z) - Fuzzy Classification of Multi-intent Utterances [0.0]
Current intent classification approaches assign binary intent class memberships to natural language utterances.
We propose a scheme to address the ambiguity in single-intent as well as multi-intent natural language utterances.
arXiv Detail & Related papers (2021-04-22T02:15:56Z) - Generalized Zero-shot Intent Detection via Commonsense Knowledge [5.398580049917152]
We propose RIDE: an intent detection model that leverages commonsense knowledge in an unsupervised fashion to overcome the issue of training data scarcity.
RIDE computes robust and generalizable relationship meta-features that capture deep semantic relationships between utterances and intent labels.
Our extensive experimental analysis on three widely-used intent detection benchmarks shows that relationship meta-features significantly increase the accuracy of detecting both seen and unseen intents.
arXiv Detail & Related papers (2021-02-04T23:36:41Z) - Few-shot Learning for Multi-label Intent Detection [59.66787898744991]
State-of-the-art work estimates label-instance relevance scores and uses a threshold to select multiple associated intent labels.
Experiments on two datasets show that the proposed model significantly outperforms strong baselines in both one-shot and five-shot settings.
arXiv Detail & Related papers (2020-10-11T14:42:18Z) - Dynamic Semantic Matching and Aggregation Network for Few-shot Intent
Detection [69.2370349274216]
Few-shot Intent Detection is challenging due to the scarcity of available annotated utterances.
Semantic components are distilled from utterances via multi-head self-attention.
Our method provides a comprehensive matching measure to enhance representations of both labeled and unlabeled instances.
arXiv Detail & Related papers (2020-10-06T05:16:38Z) - Interaction Matching for Long-Tail Multi-Label Classification [57.262792333593644]
We present an elegant and effective approach for addressing limitations in existing multi-label classification models.
By performing soft n-gram interaction matching, we match labels with natural language descriptions.
arXiv Detail & Related papers (2020-05-18T15:27:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.