論文の概要: Few-Shot Recalibration of Language Models
- arxiv url: http://arxiv.org/abs/2403.18286v1
- Date: Wed, 27 Mar 2024 06:25:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 18:06:46.072619
- Title: Few-Shot Recalibration of Language Models
- Title(参考訳): 言語モデルの簡単な再校正
- Authors: Xiang Lisa Li, Urvashi Khandelwal, Kelvin Guu,
- Abstract要約: 我々は、任意のスライスからラベルのない例をいくつか取り込んだリカレーションモデルをトレーニングし、信頼度スコアをそのスライスに対してより正確なものに再マップする曲線を予測する。
我々の訓練されたモデルは、そのスライスからラベル付きデータを使わずに、任意の新しいスライスのために再調整できる。
実験により、我々の数発の再校正器は既存の校正方法より一貫して優れていることが示された。
- 参考スコア(独自算出の注目度): 23.829795148520834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work has uncovered promising ways to extract well-calibrated confidence estimates from language models (LMs), where the model's confidence score reflects how likely it is to be correct. However, while LMs may appear well-calibrated over broad distributions, this often hides significant miscalibration within narrower slices (e.g., systemic over-confidence in math can balance out systemic under-confidence in history, yielding perfect calibration in aggregate). To attain well-calibrated confidence estimates for any slice of a distribution, we propose a new framework for few-shot slice-specific recalibration. Specifically, we train a recalibration model that takes in a few unlabeled examples from any given slice and predicts a curve that remaps confidence scores to be more accurate for that slice. Our trained model can recalibrate for arbitrary new slices, without using any labeled data from that slice. This enables us to identify domain-specific confidence thresholds above which the LM's predictions can be trusted, and below which it should abstain. Experiments show that our few-shot recalibrator consistently outperforms existing calibration methods, for instance improving calibration error for PaLM2-Large on MMLU by 16%, as compared to temperature scaling.
- Abstract(参考訳): 最近の研究は、言語モデル(LM)から、そのモデルの信頼度スコアがどの程度正確であるかを反映した、よく校正された信頼推定を抽出する有望な方法を明らかにしている。
しかし、LMは広い分布に対してよく校正されているように見えるが、これはしばしばより狭いスライス内で重大な誤校正を隠蔽する(例えば、数学における体系的な過信は、歴史における体系的な過信を均衡させ、集合における完全な校正をもたらす)。
分布の任意のスライスに対する確実な信頼度推定を実現するために,スライス固有再校正のための新しいフレームワークを提案する。
具体的には、任意のスライスからラベルのないいくつかの例を取り入れたリカレーションモデルをトレーニングし、信頼度スコアをそのスライスに対してより正確なものに再マップする曲線を予測する。
我々の訓練されたモデルは、そのスライスからラベル付きデータを使わずに、任意の新しいスライスのために再調整できる。
これにより、LMの予測が信頼できる上述のドメイン固有の信頼しきい値を特定でき、その下にあるものは無視できる。
実験の結果, 従来のキャリブレーション法に比べて, MMLU上のPaLM2-Largeのキャリブレーション誤差が16%向上するなど, 従来のキャリブレーション法よりも常に優れていることがわかった。
関連論文リスト
- Improving Predictor Reliability with Selective Recalibration [15.319277333431318]
リカレーションは、事前訓練されたモデルで信頼性の高い信頼度を推定する最も効果的な方法の1つである。
そこで我々は,選択モデルがユーザの選択比率を下げることを学ぶテキスト選択的リカレーションを提案する。
以上の結果から,選択的再校正は幅広い選択基準と再校正基準よりも,キャリブレーション誤差が著しく低いことが示唆された。
論文 参考訳(メタデータ) (2024-10-07T18:17:31Z) - Reassessing How to Compare and Improve the Calibration of Machine Learning Models [7.183341902583164]
結果の予測確率がモデル予測に基づいてその結果の観測周波数と一致した場合、機械学習モデルを校正する。
キャリブレーションと予測の指標が追加の一般化の指標を伴わない限り、最先端のように見えるような簡単な再校正手法が存在することを示す。
論文 参考訳(メタデータ) (2024-06-06T13:33:45Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
本稿では,複数サンプルモデル生成系の分布から信頼度を導出する可能性について,一貫性の3つの尺度を用いて検討する。
その結果、一貫性に基づくキャリブレーション手法は、既存のポストホック手法よりも優れていることがわかった。
種々のLMの特性に合わせて,キャリブレーションに適した整合性指標を選択するための実用的なガイダンスを提供する。
論文 参考訳(メタデータ) (2024-02-21T16:15:20Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
カーネルベースのキャリブレーションメトリクスを導入し、分類と回帰の両方で一般的なキャリブレーションの形式を統一・一般化する。
これらの指標は、異なるサンプル推定を許容しており、キャリブレーションの目的を経験的リスク最小化に組み込むのが容易である。
決定タスクにキャリブレーションメトリクスを調整し、正確な損失推定を行ない、後悔しない決定を行うための直感的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-10-31T06:19:40Z) - Training Normalizing Flows with the Precision-Recall Divergence [73.92251251511199]
特定精度リコールトレードオフを達成することは、em PR-divergencesと呼ぶ家族からの-divergencesの最小化に相当することを示す。
本稿では, 正規化フローをトレーニングして, 偏差を最小化し, 特に, 所与の高精度リコールトレードオフを実現する新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2023-02-01T17:46:47Z) - Beyond calibration: estimating the grouping loss of modern neural
networks [68.8204255655161]
適切なスコアリングルール理論は、キャリブレーション損失が与えられた場合、個々のエラーを特徴づける欠片がグループ化損失であることを示している。
視覚およびNLPにおける現代のニューラルネットワークアーキテクチャは、特に分散シフト設定においてグループ化損失を示す。
論文 参考訳(メタデータ) (2022-10-28T07:04:20Z) - Modular Conformal Calibration [80.33410096908872]
回帰における再校正のためのアルゴリズムを多種多様なクラスで導入する。
このフレームワークは、任意の回帰モデルをキャリブレーションされた確率モデルに変換することを可能にする。
我々は17の回帰データセットに対するMCCの実証的研究を行った。
論文 参考訳(メタデータ) (2022-06-23T03:25:23Z) - Revisiting Calibration for Question Answering [16.54743762235555]
従来のキャリブレーション評価はモデル信頼性の有用性を反映していないと論じる。
モデルが誤った予測に低信頼を割り当て、正しい予測に高信頼を割り当てているかどうかをよりよく把握する新しい校正基準であるMacroCEを提案する。
論文 参考訳(メタデータ) (2022-05-25T05:49:56Z) - Bayesian Confidence Calibration for Epistemic Uncertainty Modelling [4.358626952482686]
キャリブレーション法の不確実性を考慮した信頼度推定手法を提案する。
物体検出校正のための最先端校正性能を実現する。
論文 参考訳(メタデータ) (2021-09-21T10:53:16Z) - Localized Calibration: Metrics and Recalibration [133.07044916594361]
完全大域キャリブレーションと完全個別化キャリブレーションのギャップにまたがる細粒度キャリブレーション指標を提案する。
次に,局所再校正法であるLoReを導入し,既存の校正法よりもLCEを改善する。
論文 参考訳(メタデータ) (2021-02-22T07:22:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。