論文の概要: Beyond calibration: estimating the grouping loss of modern neural
networks
- arxiv url: http://arxiv.org/abs/2210.16315v3
- Date: Thu, 27 Apr 2023 12:00:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-28 17:05:52.124098
- Title: Beyond calibration: estimating the grouping loss of modern neural
networks
- Title(参考訳): キャリブレーションを超えて:現代のニューラルネットワークのグルーピング損失の推定
- Authors: Alexandre Perez-Lebel (SODA), Marine Le Morvan (SODA), Ga\"el
Varoquaux (SODA)
- Abstract要約: 適切なスコアリングルール理論は、キャリブレーション損失が与えられた場合、個々のエラーを特徴づける欠片がグループ化損失であることを示している。
視覚およびNLPにおける現代のニューラルネットワークアーキテクチャは、特に分散シフト設定においてグループ化損失を示す。
- 参考スコア(独自算出の注目度): 68.8204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to ensure that a classifier gives reliable confidence scores is
essential to ensure informed decision-making. To this end, recent work has
focused on miscalibration, i.e., the over or under confidence of model scores.
Yet calibration is not enough: even a perfectly calibrated classifier with the
best possible accuracy can have confidence scores that are far from the true
posterior probabilities. This is due to the grouping loss, created by samples
with the same confidence scores but different true posterior probabilities.
Proper scoring rule theory shows that given the calibration loss, the missing
piece to characterize individual errors is the grouping loss. While there are
many estimators of the calibration loss, none exists for the grouping loss in
standard settings. Here, we propose an estimator to approximate the grouping
loss. We show that modern neural network architectures in vision and NLP
exhibit grouping loss, notably in distribution shifts settings, which
highlights the importance of pre-production validation.
- Abstract(参考訳): 分類器が信頼度を確実にする能力は、情報的な意思決定を保証するために不可欠である。
この目的のために、最近の研究は誤校正、すなわちモデルスコアの過度または過小評価に焦点を当てている。
しかし、キャリブレーションは十分ではない: 最高の精度の完全なキャリブレーション分類器でさえ、真の後部確率とは程遠い信頼スコアを持つことができる。
これは、同じ信頼度スコアを持つが真の後方確率が異なるサンプルによって作成されたグループ化損失によるものである。
適切なスコアリングルール理論は、キャリブレーション損失が与えられた場合、個々のエラーを特徴づける欠片がグループ化損失であることを示している。
キャリブレーション損失には多くの推定要因があるが、標準設定のグルーピング損失は存在していない。
本稿では,グループ化損失を近似する推定器を提案する。
視覚およびNLPにおける現代のニューラルネットワークアーキテクチャはグループ化損失を示し、特に分布シフト設定において、プレプロダクションバリデーションの重要性を強調している。
関連論文リスト
- Rethinking Early Stopping: Refine, Then Calibrate [49.966899634962374]
校正誤差と校正誤差は,訓練中に同時に最小化されないことを示す。
我々は,早期停止とハイパーパラメータチューニングのための新しい指標を導入し,トレーニング中の改善誤差を最小限に抑える。
本手法は,任意のアーキテクチャとシームレスに統合し,多様な分類タスクにおける性能を継続的に向上する。
論文 参考訳(メタデータ) (2025-01-31T15:03:54Z) - Calibrating Deep Neural Network using Euclidean Distance [5.675312975435121]
機械学習では、Focal Lossは、サンプルの分類が難しいことを強調することで、誤分類率を減らすために一般的に使用される。
高校正誤差は予測確率と実際の結果との相違を示し、モデルの信頼性に影響を及ぼす。
本研究では,FCL (Focal Loss) と呼ばれる新しい損失関数を導入する。
論文 参考訳(メタデータ) (2024-10-23T23:06:50Z) - Optimizing Calibration by Gaining Aware of Prediction Correctness [30.619608580138802]
クロスエントロピー(CE)損失はキャリブレータトレーニングに広く使われており、基底真理クラスに対する信頼を高めるためにモデルを強制する。
本稿では, キャリブレーションの目的から得られた, ポストホックキャリブレーションの新たなキャリブレーション手法を提案する。
論文 参考訳(メタデータ) (2024-04-19T17:25:43Z) - Few-Shot Recalibration of Language Models [23.829795148520834]
我々は、任意のスライスからラベルのない例をいくつか取り込んだリカレーションモデルをトレーニングし、信頼度スコアをそのスライスに対してより正確なものに再マップする曲線を予測する。
我々の訓練されたモデルは、そのスライスからラベル付きデータを使わずに、任意の新しいスライスのために再調整できる。
実験により、我々の数発の再校正器は既存の校正方法より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2024-03-27T06:25:40Z) - Reconfidencing LLMs from the Grouping Loss Perspective [56.801251926946485]
大規模言語モデル(LLM)は、自信のある音調で幻覚的な答えを生じさせる可能性がある。
近年の研究では、不確実性制御はキャリブレーションを超えて行わなければならないことが示されている。
そこで我々は,MistralとLLaMAの回答に対する信頼度を評価するために,知識ベースから導出した新しい評価データセットを構築した。
論文 参考訳(メタデータ) (2024-02-07T15:40:22Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
カーネルベースのキャリブレーションメトリクスを導入し、分類と回帰の両方で一般的なキャリブレーションの形式を統一・一般化する。
これらの指標は、異なるサンプル推定を許容しており、キャリブレーションの目的を経験的リスク最小化に組み込むのが容易である。
決定タスクにキャリブレーションメトリクスを調整し、正確な損失推定を行ない、後悔しない決定を行うための直感的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-10-31T06:19:40Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
本稿では,境界ボックスのクラス信頼度を予測精度に合わせることを目的とした,新たな補助損失定式化を提案する。
その結果,列車の走行時間損失はキャリブレーション基準を超過し,キャリブレーション誤差を低減させることがわかった。
論文 参考訳(メタデータ) (2023-03-25T08:56:21Z) - Bayesian Confidence Calibration for Epistemic Uncertainty Modelling [4.358626952482686]
キャリブレーション法の不確実性を考慮した信頼度推定手法を提案する。
物体検出校正のための最先端校正性能を実現する。
論文 参考訳(メタデータ) (2021-09-21T10:53:16Z) - Distribution-free binary classification: prediction sets, confidence
intervals and calibration [106.50279469344937]
分布自由条件における二項分類のための不確実性定量化(キャリブレーション、信頼区間、予測セット)の3つの概念について検討する。
固定幅と一様質量の両双対の双対確率に対する信頼区間を導出する。
我々の「三脚」定理の結果として、双有理確率に対するこれらの信頼区間は分布自由キャリブレーションに繋がる。
論文 参考訳(メタデータ) (2020-06-18T14:17:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。