論文の概要: DODA: Diffusion for Object-detection Domain Adaptation in Agriculture
- arxiv url: http://arxiv.org/abs/2403.18334v1
- Date: Wed, 27 Mar 2024 08:16:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 17:57:01.710371
- Title: DODA: Diffusion for Object-detection Domain Adaptation in Agriculture
- Title(参考訳): DODA:農業におけるオブジェクト検出ドメイン適応のための拡散
- Authors: Shuai Xiang, Pieter M. Blok, James Burridge, Haozhou Wang, Wei Guo,
- Abstract要約: 本稿では,農業の新しい領域を対象とした高品質なオブジェクト検出データを生成するデータシンセサイザーであるDODAを提案する。
具体的には、画像としてレイアウトを符号化することでレイアウト・ツー・イメージの制御性を向上し、ラベルの品質を向上させる。
- 参考スコア(独自算出の注目度): 4.549305421261851
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The diverse and high-quality content generated by recent generative models demonstrates the great potential of using synthetic data to train downstream models. However, in vision, especially in objection detection, related areas are not fully explored, the synthetic images are merely used to balance the long tails of existing datasets, and the accuracy of the generated labels is low, the full potential of generative models has not been exploited. In this paper, we propose DODA, a data synthesizer that can generate high-quality object detection data for new domains in agriculture. Specifically, we improve the controllability of layout-to-image through encoding layout as an image, thereby improving the quality of labels, and use a visual encoder to provide visual clues for the diffusion model to decouple visual features from the diffusion model, and empowering the model the ability to generate data in new domains. On the Global Wheat Head Detection (GWHD) Dataset, which is the largest dataset in agriculture and contains diverse domains, using the data synthesized by DODA improves the performance of the object detector by 12.74-17.76 AP$_{50}$ in the domain that was significantly shifted from the training data.
- Abstract(参考訳): 最近の生成モデルによって生成される多種多様で高品質なコンテンツは、下流モデルのトレーニングに合成データを使用する大きな可能性を示している。
しかし、視覚、特に対物検出において、関連する領域は十分に探索されず、合成画像は既存のデータセットの長い尾のバランスをとるためにのみ使用され、生成されたラベルの精度は低く、生成モデルの可能性は活用されていない。
本稿では,農業の新しい領域を対象とした高品質なオブジェクト検出データを生成するデータシンセサイザーであるDODAを提案する。
具体的には,画像としてレイアウトを符号化することでレイアウト・ツー・イメージの制御性を向上し,ラベルの品質を向上させるとともに,拡散モデルの視覚的特徴を拡散モデルから切り離すための視覚的手がかりを提供する視覚的エンコーダを用いて,新しいドメインでデータを生成する能力をモデルに与える。
農業で最大のデータセットであり、多様なドメインを含むGWHDデータセットでは、DODAによって合成されたデータを使用して、トレーニングデータから大幅にシフトしたドメイン内のオブジェクト検出器のパフォーマンスを12.74-17.76 AP$_{50}$で改善する。
関連論文リスト
- AeroGen: Enhancing Remote Sensing Object Detection with Diffusion-Driven Data Generation [38.89367726721828]
リモートセンシング画像オブジェクト検出(RSIOD)は、衛星や空中画像内の特定の物体を特定し、特定することを目的としている。
現在のRSIODデータセットにはラベル付きデータが不足しており、現在の検出アルゴリズムのパフォーマンスを著しく制限している。
本稿では,RSIODに適したレイアウト制御可能な拡散生成モデル(AeroGen)を提案する。
論文 参考訳(メタデータ) (2024-11-23T09:04:33Z) - Controlling Human Shape and Pose in Text-to-Image Diffusion Models via Domain Adaptation [1.3654846342364308]
本研究では、事前訓練されたテキスト・画像拡散モデルにおいて、人間の形状とポーズを条件付きで制御する手法を提案する。
これらの拡散モデルを微調整して新しい条件に適合させるには、大きなデータセットと高品質なアノテーションが必要である。
合成条件情報を分離することで画像品質を維持するドメイン適応手法を提案する。
論文 参考訳(メタデータ) (2024-11-07T14:02:41Z) - From Web Data to Real Fields: Low-Cost Unsupervised Domain Adaptation for Agricultural Robots [3.7619101673213664]
本稿では,Unsupervised Domain Adaptation (UDA) を用いて,特定分野への適応を低コストで行うことを目的とする。
我々は、多様なインターネットソースデータのプールから、特定の場所でロボットが収集した小さなデータセットへの、新たなドメインシフトを探求する。
我々は,マルチレベル注意に基づく適応識別器(MAAD)という新しいモジュールを導入し,任意の検出モデルの特徴抽出器レベルで統合する。
論文 参考訳(メタデータ) (2024-10-31T13:11:09Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
コンピュータビジョンでは、データの多様性の欠如がモデル性能を損なうことはよく知られている。
本稿では, 生成モデルの進歩を生かして, 単純かつ効果的なデータ拡張手法を提案する。
背景強化は、特にモデルの堅牢性と一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2024-08-01T07:40:00Z) - ADLDA: A Method to Reduce the Harm of Data Distribution Shift in Data Augmentation [11.887799310374174]
本研究では,データ分散シフトの負の影響を軽減することを目的とした新しいデータ拡張手法であるADLDAを紹介する。
実験により、ADLDAは複数のデータセットにわたるモデル性能を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-05-11T03:20:35Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - DreamDA: Generative Data Augmentation with Diffusion Models [68.22440150419003]
本稿では,新しい分類指向フレームワークDreamDAを提案する。
DreamDAは、オリジナルのデータのトレーニングイメージを種として考慮して、オリジナルのデータ分布に準拠する多様なサンプルを生成する。
また、生成したデータのラベルは、対応するシード画像のラベルと一致しない可能性があるため、擬似ラベルを生成するための自己学習パラダイムを導入する。
論文 参考訳(メタデータ) (2024-03-19T15:04:35Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
フォトリアリスティック・ジェネレータの急速な進歩は、真の画像と操作された画像の相違がますます不明瞭になっている臨界点に達している。
公開されている顔の偽造データセットはいくつかあるが、偽造顔は主にGANベースの合成技術を用いて生成される。
我々は,大規模で多様できめ細かな高忠実度データセットであるGenFaceを提案し,ディープフェイク検出の進展を促進する。
論文 参考訳(メタデータ) (2024-02-03T03:13:50Z) - UAV-Sim: NeRF-based Synthetic Data Generation for UAV-based Perception [62.71374902455154]
ニューラルレンダリングの最近の進歩を利用して、静的および動的ノベルビューUAVベースの画像レンダリングを改善する。
本研究では,主に実データと合成データのハイブリッドセットに基づいて最先端検出モデルが最適化された場合,性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-10-25T00:20:37Z) - Generative Modeling Helps Weak Supervision (and Vice Versa) [87.62271390571837]
本稿では,弱い監督と生成的敵ネットワークを融合したモデルを提案する。
弱い監督によるラベル推定と並行して、データの離散変数をキャプチャする。
これは、弱い教師付き合成画像と擬似ラベルによるデータ拡張を可能にする最初のアプローチである。
論文 参考訳(メタデータ) (2022-03-22T20:24:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。