論文の概要: GrabDAE: An Innovative Framework for Unsupervised Domain Adaptation Utilizing Grab-Mask and Denoise Auto-Encoder
- arxiv url: http://arxiv.org/abs/2410.08023v1
- Date: Thu, 10 Oct 2024 15:19:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 05:55:13.965953
- Title: GrabDAE: An Innovative Framework for Unsupervised Domain Adaptation Utilizing Grab-Mask and Denoise Auto-Encoder
- Title(参考訳): GrabDAE: Grab-MaskとDenoise Auto-Encoderを利用した教師なしドメイン適応のための革新的フレームワーク
- Authors: Junzhou Chen, Xuan Wen, Ronghui Zhang, Bingtao Ren, Di Wu, Zhigang Xu, Danwei Wang,
- Abstract要約: Unsupervised Domain Adaptation (UDA)は、ラベル付きソースドメインでトレーニングされたモデルを、ドメインシフトに対処することによってラベルなしのターゲットドメインに適応することを目的としている。
視覚分類タスクのドメインシフトに対処するために設計された,革新的なUDAフレームワークであるGrabDAEを紹介する。
- 参考スコア(独自算出の注目度): 16.244871317281614
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Unsupervised Domain Adaptation (UDA) aims to adapt a model trained on a labeled source domain to an unlabeled target domain by addressing the domain shift. Existing Unsupervised Domain Adaptation (UDA) methods often fall short in fully leveraging contextual information from the target domain, leading to suboptimal decision boundary separation during source and target domain alignment. To address this, we introduce GrabDAE, an innovative UDA framework designed to tackle domain shift in visual classification tasks. GrabDAE incorporates two key innovations: the Grab-Mask module, which blurs background information in target domain images, enabling the model to focus on essential, domain-relevant features through contrastive learning; and the Denoising Auto-Encoder (DAE), which enhances feature alignment by reconstructing features and filtering noise, ensuring a more robust adaptation to the target domain. These components empower GrabDAE to effectively handle unlabeled target domain data, significantly improving both classification accuracy and robustness. Extensive experiments on benchmark datasets, including VisDA-2017, Office-Home, and Office31, demonstrate that GrabDAE consistently surpasses state-of-the-art UDA methods, setting new performance benchmarks. By tackling UDA's critical challenges with its novel feature masking and denoising approach, GrabDAE offers both significant theoretical and practical advancements in domain adaptation.
- Abstract(参考訳): Unsupervised Domain Adaptation (UDA)は、ラベル付きソースドメインでトレーニングされたモデルを、ドメインシフトに対処することによってラベルなしのターゲットドメインに適応することを目的としている。
既存のUnsupervised Domain Adaptation (UDA) メソッドは、ターゲットドメインからのコンテキスト情報を完全に活用するに足りず、ソースとターゲットドメインのアライメントの間に最適な決定境界が分離される。
この問題を解決するために,視覚分類タスクのドメインシフトに対処するために設計された,革新的なUDAフレームワークであるGrabDAEを紹介する。
GrabDAEには2つの重要なイノベーションが含まれている。Grab-Maskモジュールは、ターゲットのドメインイメージの背景情報を曖昧にし、対照的な学習を通じて本質的なドメイン関連機能に集中できるようにする。
これらのコンポーネントはGrabDAEに、ラベル付けされていないターゲットドメインデータを効果的に処理する権限を与え、分類精度とロバスト性の両方を大幅に改善する。
VisDA-2017、Office-Home、Office31といったベンチマークデータセットに関する大規模な実験は、GrabDAEが最先端のUDAメソッドを一貫して超え、新しいパフォーマンスベンチマークを設定することを示した。
UDAの新たな機能マスキングとデノイングアプローチによる重要な課題に対処することで、GrabDAEはドメイン適応における重要な理論的および実践的な進歩を提供する。
関連論文リスト
- Style Adaptation for Domain-adaptive Semantic Segmentation [2.1365683052370046]
ドメインの不一致は、ターゲットドメインに適用した場合、ソースドメインデータに基づいてトレーニングされた一般的なネットワークモデルの性能を著しく低下させる。
パラメータ計算を必要とせず、自己学習に基づくUDA手法とシームレスに統合する。
提案手法は,GTA->Cityscapesデータセット上で76.93 mIoUの有意なUDA性能を達成し,過去の成果に比べて+1.03ポイント向上したことを示す。
論文 参考訳(メタデータ) (2024-04-25T02:51:55Z) - Deep Feature Registration for Unsupervised Domain Adaptation [15.246480756974963]
本稿では,ドメイン不変性を維持する登録機能を生成するためのDFRモデルを提案する。
また,対象ドメインにおける擬似ラベルの品質向上のために,擬似ラベル改質プロセスも採用している。
論文 参考訳(メタデータ) (2023-10-24T18:04:53Z) - Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
非教師なしドメイン適応(UDA)は、ソースドメインからラベルのないデータを持つターゲットドメインへの知識の転送に非常に効果的であることが証明されている。
オープンセットドメイン適応(ODA)は、トレーニングフェーズ中にこれらのクラスを識別する潜在的なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-07-30T11:38:46Z) - Enhancing Visual Domain Adaptation with Source Preparation [5.287588907230967]
ドメイン適応技術は、ソースドメイン自体の特性を考慮できません。
本稿では,ソース領域バイアスを軽減する手法であるソース準備(SP)を提案する。
また,ベースライン上のmIoUでは最大40.64%の改善が見られた。
論文 参考訳(メタデータ) (2023-06-16T18:56:44Z) - AVATAR: Adversarial self-superVised domain Adaptation network for TARget
domain [11.764601181046496]
本稿では,未ラベル対象領域データの予測のための教師なし領域適応(UDA)手法を提案する。
本稿では,AVATAR(Adversarial Self-superVised Domain Adaptation Network for the TARget domain)アルゴリズムを提案する。
提案手法は,3つのUDAベンチマークにおいて,最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2023-04-28T20:31:56Z) - Domain-Agnostic Prior for Transfer Semantic Segmentation [197.9378107222422]
教師なしドメイン適応(UDA)はコンピュータビジョンコミュニティにおいて重要なトピックである。
ドメインに依存しない事前学習(DAP)を用いてドメイン間表現学習を規則化する機構を提案する。
我々の研究は、UDAがより良いプロキシ、おそらく他のデータモダリティの恩恵を受けていることを明らかにしている。
論文 参考訳(メタデータ) (2022-04-06T09:13:25Z) - Instance Relation Graph Guided Source-Free Domain Adaptive Object
Detection [79.89082006155135]
教師なしドメイン適応(Unsupervised Domain Adaptation, UDA)は、ドメインシフトの問題に取り組むための効果的なアプローチである。
UDAメソッドは、ターゲットドメインの一般化を改善するために、ソースとターゲット表現を整列させようとする。
Source-Free Adaptation Domain (SFDA)設定は、ソースデータへのアクセスを必要とせずに、ターゲットドメインに対してソーストレーニングされたモデルを適用することで、これらの懸念を軽減することを目的としている。
論文 参考訳(メタデータ) (2022-03-29T17:50:43Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
本研究では,DDF(Domain Disentanglement Faster-RCNN)を設計し,タスク学習のための特徴のソース固有情報を排除した。
DDF法は,グローバルトリプルト・ディアンタングルメント(GTD)モジュールとインスタンス類似性・ディアンタングルメント(ISD)モジュールを用いて,グローバルおよびローカルステージでの機能ディアンタングルを容易にする。
提案手法は,4つのUDAオブジェクト検出タスクにおいて最先端の手法より優れており,広い適用性で有効であることが実証された。
論文 参考訳(メタデータ) (2022-01-06T05:43:01Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
リモートセンシング画像からの道路セグメンテーションは、幅広い応用可能性を持つ課題である。
本稿では,この領域における領域シフト(DS)問題に対処するため,RoadDAと呼ばれる新たな段階的ドメイン適応モデルを提案する。
2つのベンチマーク実験の結果、RoadDAはドメインギャップを効率的に減らし、最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-08-28T09:29:14Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。