Generalized Policy Learning for Smart Grids: FL TRPO Approach
- URL: http://arxiv.org/abs/2403.18439v1
- Date: Wed, 27 Mar 2024 10:47:06 GMT
- Title: Generalized Policy Learning for Smart Grids: FL TRPO Approach
- Authors: Yunxiang Li, Nicolas Mauricio Cuadrado, Samuel Horváth, Martin Takáč,
- Abstract summary: Federated Learning (FL) can train models on heterogeneous datasets while maintaining data privacy.
This paper introduces a framework that combines FL with a Trust Region Policy Optimization (FL TRPO) aiming to reduce energy-associated emissions and costs.
- Score: 6.058785372434129
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The smart grid domain requires bolstering the capabilities of existing energy management systems; Federated Learning (FL) aligns with this goal as it demonstrates a remarkable ability to train models on heterogeneous datasets while maintaining data privacy, making it suitable for smart grid applications, which often involve disparate data distributions and interdependencies among features that hinder the suitability of linear models. This paper introduces a framework that combines FL with a Trust Region Policy Optimization (FL TRPO) aiming to reduce energy-associated emissions and costs. Our approach reveals latent interconnections and employs personalized encoding methods to capture unique insights, understanding the relationships between features and optimal strategies, allowing our model to generalize to previously unseen data. Experimental results validate the robustness of our approach, affirming its proficiency in effectively learning policy models for smart grid challenges.
Related papers
- Context-Aware Orchestration of Energy-Efficient Gossip Learning Schemes [8.382766344930157]
We present a distributed training approach based on the combination of Gossip Learning with adaptive optimization of the learning process.
We propose a data-driven approach to OGL management that relies on optimizing in real-time for each node.
Results suggest that our approach is highly efficient and effective in a broad spectrum of network scenarios.
arXiv Detail & Related papers (2024-04-18T09:17:46Z) - Enhancing Data Provenance and Model Transparency in Federated Learning
Systems -- A Database Approach [1.2180726230978978]
Federated Learning (FL) presents a promising paradigm for training machine learning models across decentralized edge devices.
Ensuring the integrity and traceability of data across these distributed environments remains a critical challenge.
We propose one of the first approaches to enhance data provenance and model transparency in FL systems.
arXiv Detail & Related papers (2024-03-03T09:08:41Z) - A Bayesian Unification of Self-Supervised Clustering and Energy-Based
Models [11.007541337967027]
We perform a Bayesian analysis of state-of-the-art self-supervised learning objectives.
We show that our objective function allows to outperform existing self-supervised learning strategies.
We also demonstrate that GEDI can be integrated into a neuro-symbolic framework.
arXiv Detail & Related papers (2023-12-30T04:46:16Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Privacy-preserving design of graph neural networks with applications to
vertical federated learning [56.74455367682945]
We present an end-to-end graph representation learning framework called VESPER.
VESPER is capable of training high-performance GNN models over both sparse and dense graphs under reasonable privacy budgets.
arXiv Detail & Related papers (2023-10-31T15:34:59Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
Federated edge learning is a promising technology to deploy intelligence at the edge of wireless networks in a privacy-preserving manner.
Under such a setting, multiple clients collaboratively train a global generic model under the coordination of an edge server.
This paper presents a distributed training paradigm that employs analog over-the-air computation to address the communication bottleneck.
arXiv Detail & Related papers (2023-02-24T08:41:19Z) - A Unified Framework for Alternating Offline Model Training and Policy
Learning [62.19209005400561]
In offline model-based reinforcement learning, we learn a dynamic model from historically collected data, and utilize the learned model and fixed datasets for policy learning.
We develop an iterative offline MBRL framework, where we maximize a lower bound of the true expected return.
With the proposed unified model-policy learning framework, we achieve competitive performance on a wide range of continuous-control offline reinforcement learning datasets.
arXiv Detail & Related papers (2022-10-12T04:58:51Z) - Energy-Aware Edge Association for Cluster-based Personalized Federated
Learning [2.3262774900834606]
Federated Learning over wireless network enables data-conscious services by leveraging ubiquitous intelligence at network edge for privacy-preserving model training.
We propose clustered federated learning to group user devices with similar preference and provide each cluster with a personalized model.
We formulate an accuracy-cost trade-off optimization problem by jointly considering model accuracy, communication resource allocation and energy consumption.
arXiv Detail & Related papers (2022-02-06T07:58:41Z) - Communication-Efficient Hierarchical Federated Learning for IoT
Heterogeneous Systems with Imbalanced Data [42.26599494940002]
Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model.
This paper studies the potential of hierarchical FL in IoT heterogeneous systems.
It proposes an optimized solution for user assignment and resource allocation on multiple edge nodes.
arXiv Detail & Related papers (2021-07-14T08:32:39Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.