論文の概要: Backpropagation-free Network for 3D Test-time Adaptation
- arxiv url: http://arxiv.org/abs/2403.18442v2
- Date: Thu, 25 Apr 2024 03:34:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 20:48:34.166427
- Title: Backpropagation-free Network for 3D Test-time Adaptation
- Title(参考訳): 3次元テスト時間適応のためのバックプロパゲーションフリーネットワーク
- Authors: Yanshuo Wang, Ali Cheraghian, Zeeshan Hayder, Jie Hong, Sameera Ramasinghe, Shafin Rahman, David Ahmedt-Aristizabal, Xuesong Li, Lars Petersson, Mehrtash Harandi,
- Abstract要約: テスト時間適応(TTA)法は、計算的に重く、メモリ集約的なバックプロパゲーションに基づくアプローチを適用する傾向がある。
本稿では,TTAのバックプロパゲーションフリーアプローチを3次元データの特定の場合に適用する手法を提案する。
- 参考スコア(独自算出の注目度): 42.469853469556966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world systems often encounter new data over time, which leads to experiencing target domain shifts. Existing Test-Time Adaptation (TTA) methods tend to apply computationally heavy and memory-intensive backpropagation-based approaches to handle this. Here, we propose a novel method that uses a backpropagation-free approach for TTA for the specific case of 3D data. Our model uses a two-stream architecture to maintain knowledge about the source domain as well as complementary target-domain-specific information. The backpropagation-free property of our model helps address the well-known forgetting problem and mitigates the error accumulation issue. The proposed method also eliminates the need for the usually noisy process of pseudo-labeling and reliance on costly self-supervised training. Moreover, our method leverages subspace learning, effectively reducing the distribution variance between the two domains. Furthermore, the source-domain-specific and the target-domain-specific streams are aligned using a novel entropy-based adaptive fusion strategy. Extensive experiments on popular benchmarks demonstrate the effectiveness of our method. The code will be available at \url{https://github.com/abie-e/BFTT3D}.
- Abstract(参考訳): 現実世界のシステムは、しばしば時間とともに新しいデータに遭遇し、ターゲットのドメインシフトを経験する。
既存のテスト時間適応(TTA)手法は、計算的に重く、メモリ集約的なバックプロパゲーションに基づくアプローチを適用する傾向がある。
本稿では,TTAのバックプロパゲーションフリーアプローチを3次元データの特定の場合に適用する手法を提案する。
我々のモデルは、ソースドメインに関する知識と補完的なターゲットドメイン固有の情報を維持するために、2ストリームアーキテクチャを使用します。
我々のモデルのバックプロパゲーションフリーな性質は、よく知られた忘れの問題に対処し、エラーの蓄積問題を緩和するのに役立ちます。
提案手法は, 疑似ラベル付けの通常うるさいプロセスや, 費用がかかる自己指導型トレーニングへの依存を解消する。
さらに,本手法は部分空間学習を活用し,二つの領域間の分散分散を効果的に低減する。
さらに、新しいエントロピーベースの適応核融合戦略を用いて、ソースドメイン特化ストリームとターゲットドメイン特化ストリームをアライメントする。
一般的なベンチマーク実験により,本手法の有効性が示された。
コードは \url{https://github.com/abie-e/BFTT3D} で入手できる。
関連論文リスト
- Align, Minimize and Diversify: A Source-Free Unsupervised Domain Adaptation Method for Handwritten Text Recognition [11.080302144256164]
Align, Minimize and Diversify (AMD) は、手書き文字認識(HTR)のための非教師なし領域適応手法である。
本手法は,3つの異なる正規化項を組み込むことで,適応中のソースデータの再検討の必要性を明確に排除する。
いくつかのベンチマークによる実験の結果、AMDの有効性とロバスト性を示し、HTRにおけるDA法よりも競争力があり、しばしば優れていた。
論文 参考訳(メタデータ) (2024-04-28T17:50:58Z) - Informative Data Mining for One-Shot Cross-Domain Semantic Segmentation [84.82153655786183]
Informative Data Mining (IDM) と呼ばれる新しいフレームワークを提案し、セマンティックセグメンテーションのための効率的なワンショットドメイン適応を実現する。
IDMは、最も情報性の高いサンプルを特定するために不確実性に基づく選択基準を提供し、迅速に適応し、冗長なトレーニングを減らす。
提案手法は,GTA5/SYNTHIAからCityscapesへの適応タスクにおいて,既存の手法より優れ,56.7%/55.4%の最先端のワンショット性能を実現している。
論文 参考訳(メタデータ) (2023-09-25T15:56:01Z) - Decorate the Newcomers: Visual Domain Prompt for Continual Test Time
Adaptation [14.473807945791132]
Continual Test-Time Adaptation (CTTA) は、ソースデータにアクセスすることなく、ラベルなしのターゲットドメインを継続的に変更することを目的としている。
そこで本論文では,NLPにおける素早い学習によって動機づけられた画像レベルの視覚領域プロンプトを,ソースモデルパラメータを凍結させながら学習することを提案する。
論文 参考訳(メタデータ) (2022-12-08T08:56:02Z) - AdaTriplet-RA: Domain Matching via Adaptive Triplet and Reinforced
Attention for Unsupervised Domain Adaptation [15.905869933337101]
教師なしドメイン適応(Unsupervised Domain Adaption、UDA)は、ソースドメインのデータとアノテーションが利用できるが、トレーニング中にラベル付けされていないターゲットデータにのみアクセスできるトランスファー学習タスクである。
本稿では、ドメイン間サンプルマッチング方式を用いて、教師なしドメイン適応タスクを改善することを提案する。
ドメイン間サンプルに合わせるために,広く利用され,堅牢なTriplet損失を適用した。
トレーニング中に発生する不正確な擬似ラベルの破滅的効果を低減するため,信頼度の高い擬似ラベルを自動的に選択し,段階的に改良する新しい不確実性測定法を提案する。
論文 参考訳(メタデータ) (2022-11-16T13:04:24Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Instance Relation Graph Guided Source-Free Domain Adaptive Object
Detection [79.89082006155135]
教師なしドメイン適応(Unsupervised Domain Adaptation, UDA)は、ドメインシフトの問題に取り組むための効果的なアプローチである。
UDAメソッドは、ターゲットドメインの一般化を改善するために、ソースとターゲット表現を整列させようとする。
Source-Free Adaptation Domain (SFDA)設定は、ソースデータへのアクセスを必要とせずに、ターゲットドメインに対してソーストレーニングされたモデルを適用することで、これらの懸念を軽減することを目的としている。
論文 参考訳(メタデータ) (2022-03-29T17:50:43Z) - Continual Test-Time Domain Adaptation [94.51284735268597]
テスト時ドメイン適応は、ソースデータを使用しずに、ソース事前訓練されたモデルをターゲットドメインに適応することを目的としている。
CoTTAは実装が容易で、市販の事前訓練モデルに簡単に組み込むことができる。
論文 参考訳(メタデータ) (2022-03-25T11:42:02Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。