Observation of vortices in a dipolar supersolid
- URL: http://arxiv.org/abs/2403.18510v1
- Date: Wed, 27 Mar 2024 12:39:50 GMT
- Title: Observation of vortices in a dipolar supersolid
- Authors: Eva Casotti, Elena Poli, Lauritz Klaus, Andrea Litvinov, Clemens Ulm, Claudia Politi, Manfred J. Mark, Thomas Bland, Francesca Ferlaino,
- Abstract summary: Supersolids are states of matter that spontaneously break two continuous symmetries.
Our work reveals a fundamental difference in vortex seeding dynamics between unmodulated and modulated quantum fluids.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Supersolids are states of matter that spontaneously break two continuous symmetries: translational invariance due to the appearance of a crystal structure and phase invariance due to phase locking of single-particle wave functions, responsible for superfluid phenomena. While originally predicted to be present in solid helium, ultracold quantum gases provided a first platform to observe supersolids, with particular success coming from dipolar atoms. Phase locking in dipolar supersolids has been probed through e.g. measurements of the phase coherence and gapless Goldstone modes, but quantized vortices, a hydrodynamic fingerprint of superfluidity, have not yet been observed. Here, with the prerequisite pieces at our disposal, namely a method to generate vortices in dipolar gases and supersolids with two-dimensional crystalline order, we report on the theoretical investigation and experimental observation of vortices in the supersolid phase. Our work reveals a fundamental difference in vortex seeding dynamics between unmodulated and modulated quantum fluids. This opens the door to study the hydrodynamic properties of exotic quantum systems with multiple spontaneously broken symmetries, in disparate domains such as quantum crystals and neutron stars.
Related papers
- Emergent Fracton Hydrodynamics in the Fractional Quantum Hall Regime of Ultracold Atoms [41.94295877935867]
We show that in the lowest Landau level the system generically relaxes subdiffusively.
The slow relaxation is understood from emergent conservation laws of the total charge.
We discuss the prospect of rotating quantum gases as well as ultracold atoms in optical lattices for observing this unconventional relaxation dynamics.
arXiv Detail & Related papers (2024-10-09T18:00:02Z) - Supersolidity in ultra-cold dipolar gases [0.0]
Supersolidity is an intriguing and challenging state of matter which combines key features of superfluids and crystals.
The article summarizes the main experimental and theoretical achievements concerning supersolidity in the field of dipolar gases.
arXiv Detail & Related papers (2024-05-15T17:47:03Z) - Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Emergence of fluctuating hydrodynamics in chaotic quantum systems [47.187609203210705]
macroscopic fluctuation theory (MFT) was recently developed to model the hydrodynamics of fluctuations.
We perform large-scale quantum simulations that monitor the full counting statistics of particle-number fluctuations in boson ladders.
Our results suggest that large-scale fluctuations of isolated quantum systems display emergent hydrodynamic behavior.
arXiv Detail & Related papers (2023-06-20T11:26:30Z) - Halide perovskite artificial solids as a new platform to simulate
collective phenomena in doped Mott insulators [43.55994393060723]
We introduce artificial lattices made of lead halide perovskite nanocubes as a new platform to simulate and investigate the physics of correlated quantum materials.
We show that, at large photo-doping, the exciton gas undergoes an excitonic Mott transition, which fully realizes the magnetic-field-driven insulator-to-metal transition described by the Hubbard model.
Our results demonstrate that time-resolved experiments span a parameter region of the Hubbard model in which long-range and phase-coherent orders emerge out of a doped Mott insulating phase.
arXiv Detail & Related papers (2023-03-15T17:38:51Z) - Ground-state stability and excitation spectrum of a one-dimensional
dipolar supersolid [0.0]
We study the excitation spectrum across the quantum phase transition from a superfluid to a supersolid phase of a dipolar Bose gas confined to a one-dimensional geometry.
We find fast convergence of the ground-state energy in the supersolid with the number of order parameters.
arXiv Detail & Related papers (2022-11-30T17:22:50Z) - Staggered quantum phases of dipolar bosons at finite temperatures [0.0]
We study finite-temperature phase transitions of quantum phases of dipolar bosons in a two-dimensional optical lattice.
We estimate the critical temperature of the staggered superfluid to normal fluid transition and show that this transition is of the Kosterlitz-Thouless type.
Our study paves a way to observe novel staggered quantum phases in recent dipolar optical lattice experiments.
arXiv Detail & Related papers (2022-11-09T11:44:45Z) - Gauge-theoretic origin of Rydberg quantum spin liquids [0.0]
We introduce an exact relation between an Ising-Higgs lattice gauge theory on the kagome lattice and blockaded models on Ruby lattices.
This relation elucidates the origin of previously observed topological spin liquids by directly linking the latter to a deconfined phase of a solvable gauge theory.
arXiv Detail & Related papers (2022-05-25T18:19:26Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Measurement-induced quantum criticality under continuous monitoring [0.0]
We investigate entanglement phase transitions from volume-law to area-law entanglement in a quantum many-body state under continuous position measurement.
We find the signatures of the transitions as peak structures in the mutual information as a function of measurement strength.
We propose a possible experimental setup to test the predicted entanglement transition based on the subsystem particle-number fluctuations.
arXiv Detail & Related papers (2020-04-24T19:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.