Supersolidity in ultra-cold dipolar gases
- URL: http://arxiv.org/abs/2405.09537v1
- Date: Wed, 15 May 2024 17:47:03 GMT
- Title: Supersolidity in ultra-cold dipolar gases
- Authors: Alessio Recati, Sandro Stringari,
- Abstract summary: Supersolidity is an intriguing and challenging state of matter which combines key features of superfluids and crystals.
The article summarizes the main experimental and theoretical achievements concerning supersolidity in the field of dipolar gases.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Can a gas behave like a crystal? Supersolidity is an intriguing and challenging state of matter which combines key features of superfluids and crystals. Predicted a long time ago, its experimental realization has been recently achieved in Bose-Einstein condensed (BEC) atomic gases inside optical resonators, spin-orbit coupled BEC's and atomic gases interacting with long range dipolar forces. The activity on dipolar gases has been particularly vibrant in the last few years. This perspective article summarizes the main experimental and theoretical achievements concerning supersolidity in the field of dipolar gases, like the observation of the density modulations caused by the spontaneous breaking of translational invariance, the effects of coherence and the occurrence of novel Goldstone modes. A series of important issues for the future experimental and theoretical research are outlined including, among others, the possible realization of quantized vortices inside these novel crystal structure, the role of dimensionality, the characterisation of the crystal properties and the nature of the phase transitions. At the end a brief overview on some other (mainly cold atomic) platforms, where supersolidity has been observed or where supersolidty is expected to emerge is provided.
Related papers
- Production and stabilization of a spin mixture of ultracold dipolar Bose gases [39.58317527488534]
We present experimental results for a mixture composed of the two lowest Zeeman states of $162$Dy atoms.
Due to an interference phenomenon, the rate for such inelastic processes is dramatically reduced with respect to the Wigner threshold law.
arXiv Detail & Related papers (2024-07-11T17:37:01Z) - Observation of vortices in a dipolar supersolid [0.0]
Supersolids are states of matter that spontaneously break two continuous symmetries.
Our work reveals a fundamental difference in vortex seeding dynamics between unmodulated and modulated quantum fluids.
arXiv Detail & Related papers (2024-03-27T12:39:50Z) - Super-Tonks-Girardeau quench of dipolar bosons in a one-dimensional
optical lattice [0.0]
We simulate a super-Tonks-Girardeau quench on dipolar bosons in a one-dimensional optical lattice.
By calculating particle density, correlations, entropy measures, and natural occupations, we establish the regimes of stability as a function of dipolar interaction strength.
Our study highlights the potential of long-range interactions to explore new mechanisms to steer and stabilize excited quantum states of matter.
arXiv Detail & Related papers (2024-01-18T19:00:00Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Halide perovskite artificial solids as a new platform to simulate
collective phenomena in doped Mott insulators [43.55994393060723]
We introduce artificial lattices made of lead halide perovskite nanocubes as a new platform to simulate and investigate the physics of correlated quantum materials.
We show that, at large photo-doping, the exciton gas undergoes an excitonic Mott transition, which fully realizes the magnetic-field-driven insulator-to-metal transition described by the Hubbard model.
Our results demonstrate that time-resolved experiments span a parameter region of the Hubbard model in which long-range and phase-coherent orders emerge out of a doped Mott insulating phase.
arXiv Detail & Related papers (2023-03-15T17:38:51Z) - Dipolar physics: A review of experiments with magnetic quantum gases [0.0]
We present the aspects of the magnetic quantum-gas platform that make it unique for exploring ultracold and quantum physics.
The study of ultracold gases made of highly magnetic atoms has blossomed since the achievement of quantum degeneracy in chromium atoms in 2004.
arXiv Detail & Related papers (2022-01-07T20:43:34Z) - A perspective on ab initio modeling of polaritonic chemistry: The role
of non-equilibrium effects and quantum collectivity [0.0]
This perspective provides a brief introduction into the theoretical complexity of polaritonic chemistry.
ab initio methods are used to tackle this complexity.
Various extensions towards a refined description of cavity-modified chemistry are introduced.
arXiv Detail & Related papers (2021-08-27T12:48:57Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.