Exact Solution of Bipartite Fluctuations in One-Dimensional Fermions
- URL: http://arxiv.org/abs/2403.18523v2
- Date: Thu, 18 Apr 2024 07:11:32 GMT
- Title: Exact Solution of Bipartite Fluctuations in One-Dimensional Fermions
- Authors: Kazuya Fujimoto, Tomohiro Sasamoto,
- Abstract summary: We study the variance of a bipartite fluctuation in one-dimensional noninteracting fermionic dynamics starting from an alternating state.
We find that it shows quantitative agreement with the experimentally observed variance growth without any fitting parameters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Emergence of hydrodynamics in quantum many-body systems has recently garnered growing interest. The recent experiment of ultracold atoms [J. F. Wienand {\it et al.}, arXiv:2306.11457] studied emergent hydrodynamics in hard-core bosons using a bipartite fluctuation, which quantifies how the particle number fluctuates in a subsystem. In this Letter, we theoretically study the variance of a bipartite fluctuation in one-dimensional noninteracting fermionic dynamics starting from an alternating state, deriving the exact solution of the variance and its asymptotic linear growth law for the long-time dynamics. To compare the theoretical prediction with the experiment, we generalize our exact solution by incorporating the incompleteness of the initial alternating state, deriving the general linear growth law analytically. We find that it shows quantitative agreement with the experimentally observed variance growth without any fitting parameters.
Related papers
- Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Closed-form solutions for the Salpeter equation [41.94295877935867]
We study the propagator of the $1+1$ dimensional Salpeter Hamiltonian, describing a relativistic quantum particle with no spin.
The analytical extension of the Hamiltonian in the complex plane allows us to formulate the equivalent problem, namely the B"aumer equation.
This B"aumera corresponds to the Green function of a relativistic diffusion process that interpolates between Cauchy for small times and Gaussian diffusion for large times.
arXiv Detail & Related papers (2024-06-26T15:52:39Z) - Quasicondensation and off-diagonal long-range order of hard-core bosons
during a free expansion [0.0]
Quasicondensation in one dimension is known to occur for equilibrium systems of hard-core bosons (HCBs) at zero temperature.
We revisit the dynamical quasicondensation of HCBs, providing a fully analytical treatment of the issue.
arXiv Detail & Related papers (2024-01-30T10:03:17Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Rotational dynamics induced by low energy binary collisions of quantum
droplets [0.0]
We focus on quantum droplets formed by dilute Bose gases made up from binary mixtures of alkaline atoms.
The stability of the ground state is known to be longer for the chosen heteronuclear gases than for the homonuclear ones.
arXiv Detail & Related papers (2023-04-06T21:21:41Z) - Entropy Production and the Role of Correlations in Quantum Brownian
Motion [77.34726150561087]
We perform a study on quantum entropy production, different kinds of correlations, and their interplay in the driven Caldeira-Leggett model of quantum Brownian motion.
arXiv Detail & Related papers (2021-08-05T13:11:05Z) - Quantum Generalized Hydrodynamics of the Tonks-Girardeau gas: density
fluctuations and entanglement entropy [0.0]
We derive exact results for the density fluctuations and entanglement entropy of a one-dimensional trapped Bose gas in the Tonks-Girardeau (TG) or hard-core limit.
The free nature of the TG gas allows for more accurate results on the numerical side, where a higher number of particles as compared to the interacting case can be simulated.
arXiv Detail & Related papers (2021-07-12T18:00:09Z) - Determination of the critical exponents in dissipative phase
transitions: Coherent anomaly approach [51.819912248960804]
We propose a generalization of the coherent anomaly method to extract the critical exponents of a phase transition occurring in the steady-state of an open quantum many-body system.
arXiv Detail & Related papers (2021-03-12T13:16:18Z) - Statistical mechanics of one-dimensional quantum droplets [0.0]
We study the dynamical relaxation process of modulationally unstable one-dimensional quantum droplets.
We find that the instability leads to the spontaneous formation of quantum droplets featuring multiple collisions.
arXiv Detail & Related papers (2021-02-25T15:30:30Z) - Dynamics of large deviations in the hydrodynamic limit: Non-interacting
systems [0.0]
We study the dynamics of the energy transferred across a point along a quantum chain.
We consider the transverse field Ising and harmonic chains as prototypical models of non-interacting fermionic and bosonic excitations.
arXiv Detail & Related papers (2020-07-23T16:33:58Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.