Exact Solution of Bipartite Fluctuations in One-Dimensional Fermions
- URL: http://arxiv.org/abs/2403.18523v3
- Date: Thu, 26 Dec 2024 11:11:51 GMT
- Title: Exact Solution of Bipartite Fluctuations in One-Dimensional Fermions
- Authors: Kazuya Fujimoto, Tomohiro Sasamoto,
- Abstract summary: Emergence of hydrodynamics in quantum many-body systems has recently garnered growing interest.
We theoretically study the variance of a bipartite fluctuation in one-dimensional noninteracting fermionic dynamics.
Our exact solutions and numerical findings here lay a foundation for growing bipartite fluctuations in quantum many-body dynamics.
- Score: 0.0
- License:
- Abstract: Emergence of hydrodynamics in quantum many-body systems has recently garnered growing interest. The recent experiment of ultracold atoms [J. F. Wienand {\it et al.}, Nat. Phys. (2024), doi:10.1038/s41567-024-02611-z] studied emergent hydrodynamics in hard-core bosons using a bipartite fluctuation, which quantifies how the particle number fluctuates in a subsystem. In this Letter, we theoretically study the variance of a bipartite fluctuation in one-dimensional noninteracting fermionic dynamics starting from an alternating state, deriving the exact solution of the variance and its asymptotic linear growth law for the long-time dynamics. To compare the theoretical prediction with the experiment, we generalize our exact solution by incorporating the incompleteness of the initial alternating state, deriving the general linear growth law analytically. We find that it shows good agreement with the experimentally observed variance growth without any fitting parameters. Furthermore, we estimate a time scale for the local equilibration using our exact solution, finding that the time scale is independent of the initial incompleteness. To investigate the interaction effect, we implement numerical studies for the variance growth in interacting fermions, which has yet to be explored experimentally. As a result, we find that the presence of interactions breaks the linear variance growth derived in the noninteracting fermions. Our exact solutions and numerical findings here lay a foundation for growing bipartite fluctuations in quantum many-body dynamics.
Related papers
- Anyonization of bosons [4.18312011599462]
We observe anyonic correlations, which emerge through the phenomenon of spin-charge separation, in a 1D strongly-interacting quantum gas.
Our work opens up the door to the exploration of non-equilibrium anyonic phenomena in a highly controllable setting.
arXiv Detail & Related papers (2024-12-30T18:07:22Z) - Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Tripartite entanglement from experimental data: $B^0\to K^{*0}μ^+μ^-$ as a case study [49.1574468325115]
We develop an angular analysis based on the reconstruction of the helicity amplitudes from dedicated experimental data corresponding to the tripartite state composed by one qutrit and two qubits.
As an application of our analysis, we performed a full quantum tomography of the final state in the $B0to K*0mu+mu-$ decays using data recorded by LHCb collaboration.
arXiv Detail & Related papers (2024-09-19T18:10:14Z) - Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Rotational dynamics induced by low energy binary collisions of quantum
droplets [0.0]
We focus on quantum droplets formed by dilute Bose gases made up from binary mixtures of alkaline atoms.
The stability of the ground state is known to be longer for the chosen heteronuclear gases than for the homonuclear ones.
arXiv Detail & Related papers (2023-04-06T21:21:41Z) - Scaling of fronts and entanglement spreading during a domain wall
melting [0.0]
We revisit the out-of-equilibrium physics arising during the unitary evolution of a one-dimensional XXZ spin chain.
In the last part of the work, we include large-scale quantum fluctuations on top of the semi-classical hydrodynamic background.
arXiv Detail & Related papers (2023-03-17T15:34:43Z) - Dynamics of Spin Helices in the One-Dimensional $XX$ Model [0.0]
We analytically study the dynamics of spin helices in the one-dimensional $XX$ model.
We find a separation of timescales between the in-plane and out-of-plane spin dynamics.
One of our key findings is that the spin correlation functions decay as $t-1/2$ at long time, in contrast to the experimentally observed exponential decay.
arXiv Detail & Related papers (2021-10-12T13:03:29Z) - Entropy Production and the Role of Correlations in Quantum Brownian
Motion [77.34726150561087]
We perform a study on quantum entropy production, different kinds of correlations, and their interplay in the driven Caldeira-Leggett model of quantum Brownian motion.
arXiv Detail & Related papers (2021-08-05T13:11:05Z) - Statistical mechanics of one-dimensional quantum droplets [0.0]
We study the dynamical relaxation process of modulationally unstable one-dimensional quantum droplets.
We find that the instability leads to the spontaneous formation of quantum droplets featuring multiple collisions.
arXiv Detail & Related papers (2021-02-25T15:30:30Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.