論文の概要: Neural Architecture Search for Sentence Classification with BERT
- arxiv url: http://arxiv.org/abs/2403.18547v1
- Date: Wed, 27 Mar 2024 13:25:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 16:58:17.620979
- Title: Neural Architecture Search for Sentence Classification with BERT
- Title(参考訳): BERTを用いた文分類のためのニューラルネットワーク探索
- Authors: Philip Kenneweg, Sarah Schröder, Barbara Hammer,
- Abstract要約: 計算コストが小さいだけで,現在の単一層よりも優れたアーキテクチャを見つけるために,AutoML検索を実行します。
GLUEデータセットから,様々なNLPベンチマークを用いて分類アーキテクチャを検証する。
- 参考スコア(独自算出の注目度): 4.862490782515929
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Pre training of language models on large text corpora is common practice in Natural Language Processing. Following, fine tuning of these models is performed to achieve the best results on a variety of tasks. In this paper we question the common practice of only adding a single output layer as a classification head on top of the network. We perform an AutoML search to find architectures that outperform the current single layer at only a small compute cost. We validate our classification architecture on a variety of NLP benchmarks from the GLUE dataset.
- Abstract(参考訳): 大規模テキストコーパス上での言語モデルの事前訓練は自然言語処理において一般的である。
次に、これらのモデルの微調整を行い、様々なタスクにおいて最良の結果を得る。
本稿では,ネットワーク上に1つの出力層のみを分類ヘッドとして追加するという一般的な手法を疑問視する。
計算コストが小さいだけで,現在の単一層よりも優れたアーキテクチャを見つけるために,AutoML検索を実行します。
GLUEデータセットから,様々なNLPベンチマークを用いて分類アーキテクチャを検証する。
関連論文リスト
- Less is More: Making Smaller Language Models Competent Subgraph Retrievers for Multi-hop KGQA [51.3033125256716]
本研究では,小言語モデルで処理される条件生成タスクとして,サブグラフ検索タスクをモデル化する。
2億2千万のパラメータからなる基本生成部分グラフ検索モデルでは,最先端モデルと比較して競合検索性能が向上した。
LLMリーダを接続した最大の3Bモデルは、WebQSPとCWQベンチマークの両方で、SOTAのエンドツーエンドパフォーマンスを新たに設定します。
論文 参考訳(メタデータ) (2024-10-08T15:22:36Z) - Adaptable and Reliable Text Classification using Large Language Models [7.962669028039958]
本稿では,Large Language Models(LLMs)を活用した適応的で信頼性の高いテキスト分類パラダイムを提案する。
我々は、4つの多様なデータセット上で、複数のLLM、機械学習アルゴリズム、ニューラルネットワークベースのアーキテクチャの性能を評価した。
システムの性能は、少数ショットや微調整の戦略によってさらに向上することができる。
論文 参考訳(メタデータ) (2024-05-17T04:05:05Z) - Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
最近の基礎言語モデルでは、ゼロショットや少数ショットの設定で多くのNLPタスクで最先端のパフォーマンスが示されている。
より標準的なアプローチよりもこれらのモデルの利点は、自然言語(prompts)で書かれた命令を理解する能力である。
これにより、アノテーション付きインスタンスが限られているドメインのテキスト分類問題に対処するのに適している。
論文 参考訳(メタデータ) (2024-03-26T12:47:39Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
大規模言語モデル(LLM)は、より大きな文脈長を扱う。
LLM は、ターゲットテキストが大きければ SotA を一貫して上回る。
ゼロショット学習よりもパフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-12T17:17:27Z) - A Machine Learning Approach to Classifying Construction Cost Documents
into the International Construction Measurement Standard [0.0]
原価文書で提供される自然言語記述を分類する最初の自動モデル「Bills of Quantities」を紹介した。
英国中の24の大規模なインフラ建設プロジェクトから収集された5万件以上の項目のデータセットから学習する。
論文 参考訳(メタデータ) (2022-10-24T11:35:53Z) - TabLLM: Few-shot Classification of Tabular Data with Large Language
Models [66.03023402174138]
大規模言語モデルのゼロショットおよび少数ショット分類への応用について検討する。
テンプレートやテーブル・ツー・テキストモデル,大規模言語モデルなど,いくつかのシリアライズ手法を評価する。
このアプローチは、勾配木のような強力な伝統的なベースラインとも競合する。
論文 参考訳(メタデータ) (2022-10-19T17:08:13Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
自動回帰言語モデルは、回答を生成するデファクト標準として現れています。
これまでの研究は、探索空間を階層構造に分割する方法を探究してきた。
本研究では,検索空間の任意の構造を強制しない代替として,経路内のすべてのngramを識別子として使用することを提案する。
論文 参考訳(メタデータ) (2022-04-22T10:45:01Z) - Hierarchical Neural Network Approaches for Long Document Classification [3.6700088931938835]
我々は、より効率的な表現を効率よく捉えるために、事前訓練された普遍文(USE)と変換器からの双方向表現(BERT)を階層的に採用する。
提案するモデルは概念的に単純であり,入力データをチャンクに分割し,BERTとUSEのベースモデルに渡す。
USE + CNN/LSTM はスタンドアローンのベースラインよりも優れており、BERT + CNN/LSTM はスタンドアローンのベースラインと同等である。
論文 参考訳(メタデータ) (2022-01-18T07:17:40Z) - Train your classifier first: Cascade Neural Networks Training from upper
layers to lower layers [54.47911829539919]
我々は,高品質な分類器を探索するアルゴリズムとして見ることのできる,新しいトップダウン学習手法を開発した。
本研究では,自動音声認識(ASR)タスクと言語モデリングタスクについて検討した。
提案手法は,Wall Street Journal 上でのリカレントニューラルネットワーク ASR モデル,Switchboard 上での自己注意型 ASR モデル,WikiText-2 上での AWD-LSTM 言語モデルなど,一貫して改善されている。
論文 参考訳(メタデータ) (2021-02-09T08:19:49Z) - Conversational Question Reformulation via Sequence-to-Sequence
Architectures and Pretrained Language Models [56.268862325167575]
本稿では、列列列構造と事前学習言語モデル(PLM)を用いた会話型質問修正(CQR)の実証的研究について述べる。
我々はPLMを利用して、CQRタスクの目的である最大推定におけるトークン・トークン・トークン・トークンの独立性の強い仮定に対処する。
我々は、最近導入されたCANARDデータセットの微調整PLMをドメイン内タスクとして評価し、TREC 2019 CAsT Trackのデータからドメイン外タスクとしてモデルを検証する。
論文 参考訳(メタデータ) (2020-04-04T11:07:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。