論文の概要: PDNNet: PDN-Aware GNN-CNN Heterogeneous Network for Dynamic IR Drop Prediction
- arxiv url: http://arxiv.org/abs/2403.18569v1
- Date: Wed, 27 Mar 2024 13:50:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 16:48:33.192930
- Title: PDNNet: PDN-Aware GNN-CNN Heterogeneous Network for Dynamic IR Drop Prediction
- Title(参考訳): PDNNet:動的IRドロップ予測のためのPDN対応GNN-CNN異種ネットワーク
- Authors: Yuxiang Zhao, Zhuomin Chai, Xun Jiang, Yibo Lin, Runsheng Wang, Ru Huang,
- Abstract要約: 電力供給ネットワーク(PDN)上のIRドロップは、PDNの構成とセル電流消費と密接に関連している。
PDN構造と細胞-PDN関係の表現を統一する新しいグラフ構造PDNGraphを提案する。
我々は、深層学習に基づく動的IRドロップ予測法にグラフ構造を適用した最初の研究である。
- 参考スコア(独自算出の注目度): 5.511978576494924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: IR drop on the power delivery network (PDN) is closely related to PDN's configuration and cell current consumption. As the integrated circuit (IC) design is growing larger, dynamic IR drop simulation becomes computationally unaffordable and machine learning based IR drop prediction has been explored as a promising solution. Although CNN-based methods have been adapted to IR drop prediction task in several works, the shortcomings of overlooking PDN configuration is non-negligible. In this paper, we consider not only how to properly represent cell-PDN relation, but also how to model IR drop following its physical nature in the feature aggregation procedure. Thus, we propose a novel graph structure, PDNGraph, to unify the representations of the PDN structure and the fine-grained cell-PDN relation. We further propose a dual-branch heterogeneous network, PDNNet, incorporating two parallel GNN-CNN branches to favorably capture the above features during the learning process. Several key designs are presented to make the dynamic IR drop prediction highly effective and interpretable. We are the first work to apply graph structure to deep-learning based dynamic IR drop prediction method. Experiments show that PDNNet outperforms the state-of-the-art CNN-based methods by up to 39.3% reduction in prediction error and achieves 545x speedup compared to the commercial tool, which demonstrates the superiority of our method.
- Abstract(参考訳): 電力供給ネットワーク(PDN)上のIRドロップは、PDNの構成とセル電流消費と密接に関連している。
集積回路(IC)の設計が大きくなるにつれて、動的IRドロップシミュレーションは計算不能となり、機械学習に基づくIRドロップ予測は有望な解決策として検討されてきた。
CNNに基づく手法は、いくつかの研究でIRドロップ予測タスクに適応しているが、PDN構成を見渡す欠点は無視できない。
本稿では, セル-PDN関係を適切に表現するだけでなく, 特徴集約法において, その物理的性質に従ってIRドロップをモデル化する方法について考察する。
そこで我々はPDN構造と細粒度セル-PDN関係の表現を統一する新しいグラフ構造PDNGraphを提案する。
さらに,2つの並列GNN-CNNブランチを組み込んだ二分岐異種ネットワークPDNNetを提案する。
動的IRドロップ予測を極めて効果的かつ解釈可能なものにするために、いくつかの重要な設計が提示されている。
我々は、深層学習に基づく動的IRドロップ予測法にグラフ構造を適用した最初の研究である。
実験の結果,PDNNetは予測誤差を最大39.3%削減し,市販のツールに比べて545倍の高速化を実現し,提案手法の優位性を示した。
関連論文リスト
- CNN2GNN: How to Bridge CNN with GNN [59.42117676779735]
蒸留によりCNNとGNNを統一する新しいCNN2GNNフレームワークを提案する。
Mini-ImageNetにおける蒸留ブースターの2層GNNの性能は、ResNet152のような数十層を含むCNNよりもはるかに高い。
論文 参考訳(メタデータ) (2024-04-23T08:19:08Z) - Use of Parallel Explanatory Models to Enhance Transparency of Neural Network Configurations for Cell Degradation Detection [18.214293024118145]
我々は,ニューラルネットワークの内部動作を照らし,理解するための並列モデルを構築している。
RNNの各層が入力分布を変換して検出精度を高める方法を示す。
同時に、精度の向上を制限するために作用する副作用も発見する。
論文 参考訳(メタデータ) (2024-04-17T12:22:54Z) - Brain-on-Switch: Towards Advanced Intelligent Network Data Plane via NN-Driven Traffic Analysis at Line-Speed [33.455302442142994]
プログラム可能なネットワークは、ラインスピードで学習に基づくトラフィック分析を実現するIntelligent Network Data Plane (INDP) に大きな研究を巻き起こした。
INDPの以前の技術は、データプレーンにツリー/フォレストモデルをデプロイすることに焦点を当てていた。
本稿では,ニューラルネットワーク(NN)によるトラフィック解析を回線速度で実現することにより,INDPの境界を押し上げるBoSを提案する。
論文 参考訳(メタデータ) (2024-03-17T04:59:30Z) - Signal Processing for Implicit Neural Representations [80.38097216996164]
Inlicit Neural Representation (INR)は、マルチ層パーセプトロンを介して連続したマルチメディアデータを符号化する。
既存の作業は、その離散化されたインスタンスの処理を通じて、そのような連続的な表現を操作する。
本稿では,INSP-Netと呼ばれる暗黙的ニューラル信号処理ネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-17T06:29:07Z) - Basic Binary Convolution Unit for Binarized Image Restoration Network [146.0988597062618]
本研究では,画像復元作業における残差接続,BatchNorm,アクティベーション機能,構造などのバイナリ畳み込みのコンポーネントを再検討する。
本研究の成果と分析に基づいて, 単純で効率的な基本二元畳み込みユニット (BBCU) を設計した。
我々のBBCUは、他のBNNや軽量モデルよりも大幅に優れており、BBCUがバイナライズされたIRネットワークの基本ユニットとして機能することを示しています。
論文 参考訳(メタデータ) (2022-10-02T01:54:40Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
本稿では、新しい未知のトポロジや未知の予測タスクに適応可能な回路表現を学習するための教師付き事前学習手法を提案する。
異なる回路の変動位相構造に対処するため、各回路をグラフとして記述し、グラフニューラルネットワーク(GNN)を用いてノード埋め込みを学習する。
出力ノード電圧の予測における事前学習GNNは、新しい未知のトポロジや新しい回路レベル特性の予測に適応可能な学習表現を促進することができることを示す。
論文 参考訳(メタデータ) (2022-03-29T21:18:47Z) - LHNN: Lattice Hypergraph Neural Network for VLSI Congestion Prediction [70.31656245793302]
格子ハイパーグラフ(格子ハイパーグラフ)は、回路のための新しいグラフ定式化である。
LHNNは、F1スコアのU-netやPix2Pixと比べて、35%以上の改善を常に達成している。
論文 参考訳(メタデータ) (2022-03-24T03:31:18Z) - DNN Training Acceleration via Exploring GPGPU Friendly Sparsity [16.406482603838157]
本稿では、従来のランダムなニューロンやシナプスのドロップアウトを、通常のオンラインの行ベースもしくはタイルベースのドロップアウトパターンに置き換える近似ランダムドロップアウトを提案する。
次に,SGDに基づく探索アルゴリズムを開発し,行ベースあるいはタイルベースのドロップアウトパターンの分布を生成し,潜在的な精度損失を補う。
また,入力特徴図をその感度に基づいて動的にドロップアウトし,前向きおよび後向きのトレーニングアクセラレーションを実現するための感度対応ドロップアウト手法を提案する。
論文 参考訳(メタデータ) (2022-03-11T01:32:03Z) - OpeNPDN: A Neural-network-based Framework for Power Delivery Network
Synthesis [3.7338875223247436]
電力配信ネットワーク(PDN)の設計は、非自明で、時間集約的で反復的なタスクである。
この研究は、事前定義されたPDNテンプレートのセットを利用する機械学習ベースの方法論を提案する。
論文 参考訳(メタデータ) (2021-10-27T05:33:33Z) - Volterra Neural Networks (VNNs) [24.12314339259243]
本稿では,畳み込みニューラルネットワークの複雑性を低減するために,Volterraフィルタにインスパイアされたネットワークアーキテクチャを提案する。
本稿では,Volterra Neural Network(VNN)の並列実装とその性能について述べる。
提案手法は,動作認識のためのUCF-101およびHMDB-51データセットを用いて評価し,CNN手法よりも優れていた。
論文 参考訳(メタデータ) (2019-10-21T19:22:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。