論文の概要: Transformers-based architectures for stroke segmentation: A review
- arxiv url: http://arxiv.org/abs/2403.18637v1
- Date: Wed, 27 Mar 2024 14:42:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 16:29:03.425602
- Title: Transformers-based architectures for stroke segmentation: A review
- Title(参考訳): ストロークセグメンテーションのためのトランスフォーマーベースのアーキテクチャ:レビュー
- Authors: Yalda Zafari-Ghadim, Essam A. Rashed, Mohamed Mabrok,
- Abstract要約: ストロークは依然として重要な世界的な健康上の問題であり、タイムリーな介入と患者の成果を改善するために正確かつ効率的な診断ツールを必要とする。
当初自然言語処理用に設計されたトランスフォーマーは、医療画像解析を含む様々なコンピュータビジョンアプリケーションで顕著な能力を発揮している。
このレビューは,脳卒中セグメンテーションの文脈で適用された最先端のTransformerベースのアーキテクチャを詳細に調査することを目的としている。
- 参考スコア(独自算出の注目度): 0.6554326244334866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stroke remains a significant global health concern, necessitating precise and efficient diagnostic tools for timely intervention and improved patient outcomes. The emergence of deep learning methodologies has transformed the landscape of medical image analysis. Recently, Transformers, initially designed for natural language processing, have exhibited remarkable capabilities in various computer vision applications, including medical image analysis. This comprehensive review aims to provide an in-depth exploration of the cutting-edge Transformer-based architectures applied in the context of stroke segmentation. It commences with an exploration of stroke pathology, imaging modalities, and the challenges associated with accurate diagnosis and segmentation. Subsequently, the review delves into the fundamental ideas of Transformers, offering detailed insights into their architectural intricacies and the underlying mechanisms that empower them to effectively capture complex spatial information within medical images. The existing literature is systematically categorized and analyzed, discussing various approaches that leverage Transformers for stroke segmentation. A critical assessment is provided, highlighting the strengths and limitations of these methods, including considerations of performance and computational efficiency. Additionally, this review explores potential avenues for future research and development
- Abstract(参考訳): ストロークは依然として重要な世界的な健康上の問題であり、タイムリーな介入と患者の成果を改善するための正確かつ効率的な診断ツールを必要としている。
深層学習の方法論の出現は、医用画像解析の風景を変容させてきた。
近年、自然言語処理用に設計されたTransformersは、医療画像解析を含む様々なコンピュータビジョンアプリケーションに顕著な能力を発揮している。
この総合的なレビューは、ストロークセグメンテーションの文脈で適用された最先端のTransformerベースのアーキテクチャを詳細に調査することを目的としている。
脳卒中病理学、画像モダリティ、正確な診断とセグメンテーションに関わる課題の探求から始まります。
その後、レビューはトランスフォーマーの基本的な考え方を掘り下げ、それらのアーキテクチャの複雑さと、医療画像内の複雑な空間情報を効果的に捉えるためのメカニズムに関する詳細な洞察を提供する。
既存の文献は体系的に分類され分析され、ストロークセグメンテーションにトランスフォーマーを利用する様々なアプローチについて議論されている。
性能や計算効率の考慮を含め、これらの手法の長所と短所を強調した批判的評価が提供される。
さらに, 今後の研究開発への道筋を探る。
関連論文リスト
- Multiplex Imaging Analysis in Pathology: a Comprehensive Review on Analytical Approaches and Digital Toolkits [0.7968706282619793]
マルチ多重イメージングは、複数のバイオマーカーを1つのセクションで同時に視覚化することを可能にする。
多重画像からのデータは、前処理、セグメンテーション、特徴抽出、空間解析のための洗練された計算方法を必要とする。
PathMLは、画像分析を効率化するAIベースのプラットフォームで、臨床および研究環境では複雑な解釈がアクセス可能である。
論文 参考訳(メタデータ) (2024-11-01T18:02:41Z) - Advancing Medical Image Segmentation: Morphology-Driven Learning with Diffusion Transformer [4.672688418357066]
本稿では,雑音の存在下での頑健なセグメンテーションのためのトランスフォーマー拡散(DTS)モデルを提案する。
画像の形態的表現を解析する本モデルでは, 種々の医用画像モダリティにおいて, 従来のモデルよりも良好な結果が得られた。
論文 参考訳(メタデータ) (2024-08-01T07:35:54Z) - Anatomy-guided Pathology Segmentation [56.883822515800205]
本研究では, 解剖学的特徴と病理学的情報を組み合わせた汎用的セグメンテーションモデルを構築し, 病理学的特徴のセグメンテーション精度を高めることを目的とする。
我々の解剖学・病理学交流(APEx)訓練では,ヒト解剖学の問合せ表現に結合特徴空間をデコードする問合せベースのセグメンテーション変換器を用いている。
これにより、FDG-PET-CTとChest X-Rayの病理分類タスクにおいて、強力なベースライン法に比べて最大3.3%のマージンで、ボード全体で最高の結果を報告できる。
論文 参考訳(メタデータ) (2024-07-08T11:44:15Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - Transformers in Healthcare: A Survey [11.189892739475633]
Transformerは、当初、汎用自然言語処理(NLP)タスクを解決するために開発されたディープラーニングアーキテクチャの一種である。
本稿では, 医療画像, 構造化・非構造化電子健康記録(EHR), ソーシャルメディア, 生理信号, 生体分子配列など, 様々な形態のデータを解析するために, このアーキテクチャがどのように採用されてきたのかを概説する。
医療におけるトランスフォーマーの利用のメリットと限界について議論し、計算コスト、モデル解釈可能性、公正性、人的価値との整合性、倫理的含意、環境影響などの問題を検討する。
論文 参考訳(メタデータ) (2023-06-30T18:14:20Z) - Advances in Medical Image Analysis with Vision Transformers: A
Comprehensive Review [6.953789750981636]
医療画像におけるトランスフォーマーの応用に関する百科事典のレビューを行う。
具体的には,医療画像解析タスクにおけるトランスフォーマー関連文献の体系的,徹底的なレビューを行う。
論文 参考訳(メタデータ) (2023-01-09T16:56:23Z) - Transformers in Medical Image Analysis: A Review [46.71636151229035]
本稿では,医療画像解析分野におけるトランスフォーマーの意識と応用を促進するために,位置紙とプライマーの両方を提示する。
具体的には、まず、Transformerや他の基本的なコンポーネントに組み込まれたアテンションメカニズムのコア概念について概説する。
第2に,医療画像の応用に適したトランスフォーマーアーキテクチャの新しい分類法を提案し,その限界について議論する。
論文 参考訳(メタデータ) (2022-02-24T16:04:03Z) - Transformers in Medical Imaging: A Survey [88.03790310594533]
トランスフォーマーはいくつかのコンピュータビジョン問題に適用され、最先端の結果が得られた。
医療画像はまた、局所受容野を持つCNNと比較して、グローバルな文脈を捉えられるトランスフォーマーへの関心が高まっている。
本稿では,最近提案された建築設計から未解決問題に至るまで,医療画像におけるトランスフォーマーの応用について概説する。
論文 参考訳(メタデータ) (2022-01-24T18:50:18Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
医用画像分割タスクにおけるトランスフォーマティブネットワークアーキテクチャの利用可能性について検討する。
セルフアテンションモジュールに追加の制御機構を導入することで,既存のアーキテクチャを拡張するGated Axial-Attentionモデルを提案する。
医療画像上で効果的にモデルを訓練するために,さらにパフォーマンスを向上させる局所的グローバルトレーニング戦略 (logo) を提案する。
論文 参考訳(メタデータ) (2021-02-21T18:35:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。