論文の概要: Advancing Medical Image Segmentation: Morphology-Driven Learning with Diffusion Transformer
- arxiv url: http://arxiv.org/abs/2408.00347v2
- Date: Sun, 1 Sep 2024 03:52:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 17:11:28.190391
- Title: Advancing Medical Image Segmentation: Morphology-Driven Learning with Diffusion Transformer
- Title(参考訳): 医用画像セグメンテーションの促進:拡散変換器を用いた形態駆動学習
- Authors: Sungmin Kang, Jaeha Song, Jihie Kim,
- Abstract要約: 本稿では,雑音の存在下での頑健なセグメンテーションのためのトランスフォーマー拡散(DTS)モデルを提案する。
画像の形態的表現を解析する本モデルでは, 種々の医用画像モダリティにおいて, 従来のモデルよりも良好な結果が得られた。
- 参考スコア(独自算出の注目度): 4.672688418357066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the morphological structure of medical images and precisely segmenting the region of interest or abnormality is an important task that can assist in diagnosis. However, the unique properties of medical imaging make clear segmentation difficult,and the high cost and time-consuming task of labeling leads to a coarse-grained representation of ground truth. Facing with these problems, we propose a novel Diffusion Transformer Segmentation (DTS) model for robust segmentation in the presence of noise. We propose an alternative to the dominant Denoising U-Net encoder through experiments applying a transformer architecture, which captures global dependency through self-attention. Additionally, we propose k-neighbor label smoothing, reverse boundary attention, and self-supervised learning with morphology-driven learning to improve the ability to identify complex structures. Our model, which analyzes the morphological representation of images, shows better results than the previous models in various medical imaging modalities, including CT, MRI, and lesion images.
- Abstract(参考訳): 医学画像の形態的構造を理解し,興味領域や異常領域を正確に区分することは診断を助ける重要な課題である。
しかし, 医用画像の特徴は明瞭なセグメンテーションを困難にしており, 高いコストと時間を要するラベル付け作業は, 粗い接地事実の表現に繋がる。
これらの問題に直面して,ノイズの存在下での頑健なセグメンテーションのための新しい拡散変圧器セグメンテーション(DTS)モデルを提案する。
本稿では,トランスフォーマアーキテクチャを応用した実験により,自己注意によるグローバルな依存性を捉えることで,支配的なデノナイズU-Netエンコーダに代わる方法を提案する。
さらに,k-neighborラベルの平滑化,逆境界注意,形態学学習による自己教師型学習を提案し,複雑な構造を識別する能力を向上させる。
画像の形態的表現を解析する本モデルでは,CT,MRI,病変画像など,様々な画像モダリティにおいて,従来のモデルよりも良好な結果が得られた。
関連論文リスト
- Understanding differences in applying DETR to natural and medical images [16.200340490559338]
トランスフォーマーベースの検出器は、自然画像を用いたコンピュータビジョンタスクで成功している。
医用画像データには、非常に大きな画像サイズ、興味の少ない領域の小さい領域、微妙な違いによってのみ区別できるオブジェクトクラスなど、固有の課題がある。
本研究は, 検診用マンモグラフィーデータセットに適用した場合に, これらのトランスフォーマーに基づく設計選択の適用性を評価するものである。
論文 参考訳(メタデータ) (2024-05-27T22:06:42Z) - COIN: Counterfactual inpainting for weakly supervised semantic segmentation for medical images [3.5418498524791766]
本研究は, 新規なカウンターファクト・インパインティング・アプローチ(COIN)の開発である。
COINは、予測された分類ラベルを生成モデルを用いて異常から正常に反転させる。
本手法の有効性は,エストニアのタルツ大学病院から取得したCT画像から,合成標的と実際の腎腫瘍を分離することによって実証される。
論文 参考訳(メタデータ) (2024-04-19T12:09:49Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
医用画像分割作業の不確実性、特にラター間変動性は重要な課題である。
この可変性は、自動セグメンテーションアルゴリズムの開発と評価に直接影響を及ぼす。
バイオメディカル画像量化チャレンジ(QUBIQ)における不確実性の定量化のベンチマーク結果を報告する。
論文 参考訳(メタデータ) (2024-03-19T17:57:24Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - A Recent Survey of Vision Transformers for Medical Image Segmentation [2.4895533667182703]
ヴィジュアルトランスフォーマー(ViT)は、医用画像セグメンテーションの課題に対処するための有望な技術として登場した。
マルチスケールアテンション機構により、遠方構造間の長距離依存を効果的にモデル化することができる。
近年、研究者らは、ハイブリッドビジョントランスフォーマー(HVT)として知られるアーキテクチャにCNNを組み込む様々なViTベースのアプローチを考案した。
論文 参考訳(メタデータ) (2023-12-01T14:54:44Z) - Introducing Shape Prior Module in Diffusion Model for Medical Image
Segmentation [7.7545714516743045]
拡散確率モデル(DDPM)を利用したVerseDiff-UNetというエンドツーエンドフレームワークを提案する。
我々のアプローチは拡散モデルを標準のU字型アーキテクチャに統合する。
本手法はX線画像から得られた脊椎画像の1つのデータセットを用いて評価する。
論文 参考訳(メタデータ) (2023-09-12T03:05:00Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Self-Attentive Spatial Adaptive Normalization for Cross-Modality Domain
Adaptation [9.659642285903418]
放射線科医の費用負担を軽減するための医用画像のクロスモダリティ合成
本稿では,教師なしまたは教師なし(非ペア画像データ)の設定が可能な医用画像における画像から画像への変換手法を提案する。
論文 参考訳(メタデータ) (2021-03-05T16:22:31Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。