論文の概要: SDSAT: Accelerating LLM Inference through Speculative Decoding with Semantic Adaptive Tokens
- arxiv url: http://arxiv.org/abs/2403.18647v1
- Date: Wed, 27 Mar 2024 14:54:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 16:29:03.422590
- Title: SDSAT: Accelerating LLM Inference through Speculative Decoding with Semantic Adaptive Tokens
- Title(参考訳): SDSAT:セマンティック適応トークンを用いた投機的復号化によるLCM推論の高速化
- Authors: Chengbo Liu, Yong Zhu,
- Abstract要約: 意味適応トークン(SDSAT)を用いた投機的復号化による大規模言語モデル(LLM)の高速化手法を提案する。
この設計の主な目的は、LLMモデルの精度を損なうことなく、より正確にドラフトトークンを生成する能力を高めることである。
CodeLlama-13B と 7B で実施された実験では、それぞれ3.5X と 3.0X 以上の速度向上が達成されている。
- 参考スコア(独自算出の注目度): 4.5888031410244885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an acceleration scheme for large language models (LLMs) through Speculative Decoding with Semantic Adaptive Tokens (SDSAT). The primary objective of this design is to enhance the LLM model's ability to generate draft tokens more accurately without compromising the model's accuracy. The core strategies involve: 1) Fine-tune the model by incorporating semantic adaptive tokens that possess flexible decoding capabilities without changing its structure, allowing them to generate high-quality draft tokens. 2) By employing a training method that does not affect the standard tokens, the model can acquire parallel decoding abilities atop its original framework with minimal training overhead. 3) We have designed the "two-step-draft-then-verify" generation strategies using both greedy search and nucleus sampling. Experiments conducted on the CodeLlama-13B and 7B models have yielded speed increases of over 3.5X and 3.0X, respectively. Please refer to https://github.com/hasuoshenyun/SDSAT.
- Abstract(参考訳): 本稿では,SDSAT(Semantic Adaptive Tokens)を用いたSpeculative Decodingを通じて,大規模言語モデル(LLM)の高速化手法を提案する。
この設計の主な目的は、LLMモデルの精度を損なうことなく、より正確にドラフトトークンを生成する能力を高めることである。
中心となる戦略は以下のとおりである。
1) 構造を変更せずにフレキシブルな復号能力を持つ意味適応トークンを組み込むことにより、モデルを微調整し、高品質なドラフトトークンを生成する。
2)標準トークンに影響を与えないトレーニング手法を用いることで,トレーニングオーバーヘッドを最小限に抑えながら,オリジナルのフレームワーク上で並列復号能力を得ることができる。
3) グリーディ探索と核サンプリングの両方を用いて, 「二段階ドリフト検証」 生成戦略を考案した。
CodeLlama-13B と 7B で実施された実験では、それぞれ3.5X と 3.0X 以上の速度向上が達成されている。
https://github.com/hasuoshenyun/SDSATを参照してください。
関連論文リスト
- FastDraft: How to Train Your Draft [0.7499722271664144]
我々はFastDraftを紹介します。FastDraftは、ドラフトモデルを任意の大きな言語モデルに事前トレーニングし、調整するための、新しく効率的なアプローチです。
我々は、人気のあるPhi-3-miniとLlama-3.1-8Bモデルの2つの高パラメータ効率ドラフトをトレーニングすることで、FastDraftを実証する。
FastDraftを使って、Intel$circledR$Gaudi$circledR$2アクセラレータを24時間以内に1つのサーバに約100億のトークンでドラフトを作成することができました。
論文 参考訳(メタデータ) (2024-11-17T12:32:44Z) - ParallelSpec: Parallel Drafter for Efficient Speculative Decoding [62.68430939686566]
提案するParallelSpecは,最先端の投機的復号化手法における自己回帰的起草戦略の代替となる。
投機段階における自己回帰的起草とは対照的に,効率的な投機モデルとして機能する並列投機を訓練する。
論文 参考訳(メタデータ) (2024-10-08T01:05:08Z) - Turning Trash into Treasure: Accelerating Inference of Large Language Models with Token Recycling [53.58854856174773]
投機的復号化(英: Speculative decoding)は、推測と検証のパラダイムを通じて推論を加速するアプローチである。
トケンリサイクルは、候補トークンを隣接行列に格納し、幅優先探索アルゴリズムを用いる。
既存の列車不要の手法を30%上回り、訓練方法さえ25%上回っている。
論文 参考訳(メタデータ) (2024-08-16T12:20:56Z) - Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines [74.42485647685272]
GMLM(Generative Masked Language Models)に焦点を当てる。
我々は,マルコフ連鎖の入力として使用されるマスキングにより,データ分布の条件付き確率に適合するモデルを訓練し,モデルからサンプルを抽出する。
我々は,T5モデルを並列デコーディングに適応させ,最小品質の犠牲を伴って機械翻訳における2~3倍の高速化を実現した。
論文 参考訳(メタデータ) (2024-07-22T18:00:00Z) - Adaptive Draft-Verification for Efficient Large Language Model Decoding [24.347886232342862]
大規模言語モデル(LLM)デコードでは、与えられたコンテキストに基づいてトークンのシーケンスを生成する。
典型的な自己回帰復号法では、生成されたトークンごとに別の前方通過が必要となる。
微調整を必要とせずにLDMデコーディングを高速化するADEDを導入する。
論文 参考訳(メタデータ) (2024-06-27T22:20:39Z) - Decoding at the Speed of Thought: Harnessing Parallel Decoding of Lexical Units for LLMs [57.27982780697922]
大規模言語モデルは、自然言語の理解と生成において例外的な能力を示した。
しかし、それらの生成速度は、その復号過程の本質的にシーケンシャルな性質によって制限される。
本稿では,データ駆動方式で実装された新しいデコーディング手法であるLexical Unit Decodingを紹介する。
論文 参考訳(メタデータ) (2024-05-24T04:35:13Z) - Ouroboros: Generating Longer Drafts Phrase by Phrase for Faster Speculative Decoding [65.94521678103237]
投機的復号化(英: Speculative decoding)は、大規模言語モデルの生成プロセスを加速する広く使われている手法である。
我々は,草案作成プロセスの並列化のために,草案文を生成するOuroborosを紹介した。
ウロボロは投機的復号化で最大2.8倍、バニラ復号化で3.9倍のスピードアップを達成できる。
論文 参考訳(メタデータ) (2024-02-21T11:31:28Z) - M$^3$CS: Multi-Target Masked Point Modeling with Learnable Codebook and
Siamese Decoders [19.68592678093725]
マスク付き点モデリングは、点雲の自己教師型事前学習の有望なスキームとなっている。
M$3$CSは上記の能力を持つモデルを可能にするために提案されている。
論文 参考訳(メタデータ) (2023-09-23T02:19:21Z) - Draft & Verify: Lossless Large Language Model Acceleration via Self-Speculative Decoding [25.03122689338891]
本稿では,大規模言語モデルの高速化を目的とした新しい推論手法である自己推論復号法を提案する。
提案手法では、追加のニューラルネットワークトレーニングや、追加のメモリフットプリントを必要としない。
LLaMA-2とその変種によるベンチマークでは、最大1.99$times$まで高速化された。
論文 参考訳(メタデータ) (2023-09-15T05:34:32Z) - RetroMAE v2: Duplex Masked Auto-Encoder For Pre-Training
Retrieval-Oriented Language Models [3.4523793651427113]
本稿では,[] と通常のトークンの両方のコンテキスト化埋め込みにおける意味表現能力の向上を目標とする,二重マスク付き自動エンコーダ DupMAE を提案する。
DupMAEは単純だが経験的競争力があり、デコードコストが小さいため、モデルの表現能力と転送可能性に大きく貢献する。
論文 参考訳(メタデータ) (2022-11-16T08:57:55Z) - AvgOut: A Simple Output-Probability Measure to Eliminate Dull Responses [97.50616524350123]
機能エンジニアリングなしで、どの発話やトークンが退屈であるかを動的に認識する対話モデルを構築します。
最初のモデルMinAvgOutは、各バッチの出力分布を通して、ダイバーシティスコアを直接最大化する。
第2のモデルであるラベルファインチューニング(LFT)は、多様性スコアによって連続的にスケールされたラベルをソースシーケンスにプリペイドし、多様性レベルを制御する。
3つ目のモデルであるRLは強化学習を採用し、多様性スコアを報奨信号として扱う。
論文 参考訳(メタデータ) (2020-01-15T18:32:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。