論文の概要: Accelerating LLM Inference with Lossless Speculative Decoding Algorithms for Heterogeneous Vocabularies
- arxiv url: http://arxiv.org/abs/2502.05202v1
- Date: Fri, 31 Jan 2025 19:13:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-16 04:36:19.867253
- Title: Accelerating LLM Inference with Lossless Speculative Decoding Algorithms for Heterogeneous Vocabularies
- Title(参考訳): 不均一語彙に対するロスレス投機復号アルゴリズムによるLLM推論の高速化
- Authors: Nadav Timor, Jonathan Mamou, Daniel Korat, Moshe Berchansky, Oren Pereg, Gaurav Jain, Roy Schwartz, Moshe Wasserblat, David Harel,
- Abstract要約: 投機的復号法(SD法)は、単一の目標フォワードパスを使用して複数のトークンを生成することにより、実質的な効率向上をもたらす。
既存のSDアプローチでは、ドラフトラとターゲットモデルは同じ語彙を共有する必要があるため、ドラフトラのプールが制限される。
この共有語彙制約を除去する3つの新しいSD手法を提案する。
- 参考スコア(独自算出の注目度): 10.971976066073442
- License:
- Abstract: Accelerating the inference of large language models (LLMs) is a critical challenge in generative AI. Speculative decoding (SD) methods offer substantial efficiency gains by generating multiple tokens using a single target forward pass. However, existing SD approaches require the drafter and target models to share the same vocabulary, thus limiting the pool of possible drafters, often necessitating the training of a drafter from scratch. We present three new SD methods that remove this shared-vocabulary constraint. All three methods preserve the target distribution (i.e., they are lossless) and work with off-the-shelf models without requiring additional training or modifications. Empirically, on summarization, programming, and long-context tasks, our algorithms achieve significant speedups over standard autoregressive decoding. By enabling any off-the-shelf model to serve as drafter and requiring no retraining, this work substantially broadens the applicability of the SD framework in practice.
- Abstract(参考訳): 大規模言語モデル(LLM)の推論を加速することは、生成AIにおいて重要な課題である。
投機的復号法(SD法)は、単一の目標フォワードパスを使用して複数のトークンを生成することにより、実質的な効率向上をもたらす。
しかし、既存のSDアプローチでは、ドラフトアとターゲットモデルは同じ語彙を共有する必要があるため、ドラフトアのプールを制限し、しばしばドラフトアのトレーニングをスクラッチから行う必要がある。
この共有語彙制約を除去する3つの新しいSD手法を提案する。
これら3つの方法は、目標分布(すなわち損失のない)を保存し、追加のトレーニングや修正を必要とせず、市販のモデルで作業する。
経験的に、要約、プログラミング、長期コンテキストタスクにおいて、我々のアルゴリズムは標準の自己回帰復号よりも大幅に高速化される。
既成のモデルをドラフト作成者として機能させ、再トレーニングを必要としないようにすることで、この作業は、実際にSDフレームワークの適用性を大幅に拡大する。
関連論文リスト
- Reward-Guided Speculative Decoding for Efficient LLM Reasoning [80.55186052123196]
Reward-Guided Speculative Decoding (RSD)は,大規模言語モデル(LLM)における推論の効率向上を目的とした新しいフレームワークである。
RSDは、厳密な偏りを強制する既存の投機的復号法とは対照的に、制御されたバイアスをハイリワード出力の優先順位付けに取り入れている。
RSDは,対象モデルのみでの復号化に対して,高い効率向上を実現し,並列復号法よりも高い精度を実現している。
論文 参考訳(メタデータ) (2025-01-31T17:19:57Z) - Not all tokens are created equal: Perplexity Attention Weighted Networks for AI generated text detection [49.15148871877941]
大規模言語モデル(LLM)の検出に理論的に魅力的なアプローチを提供する次点分布出力
本稿では,LLMの最後の隠蔽状態を用いて,列長の次トーケン分布のメトリクスに基づく一連の特徴量の重み付けを行うパープレキシティ注意重み付けネットワーク(PAWN)を提案する。
PAWNは、トレーニング可能なパラメータのごく一部を持つ最強のベースラインよりも、競争力があり、より優れた分散性能を示している。
論文 参考訳(メタデータ) (2025-01-07T17:00:49Z) - Rational Metareasoning for Large Language Models [5.5539136805232205]
大きな言語モデル(LLM)を使用するためのコアテクニックとして,推論への関与を促す声が上がっている。
本研究は,認知科学で用いられるメタレゾニングの計算モデルに基づく新しいアプローチを導入する。
我々は不必要な推論を罰することで計算の価値を組み込む報酬関数を開発する。
論文 参考訳(メタデータ) (2024-10-07T23:48:52Z) - Boosting Lossless Speculative Decoding via Feature Sampling and Partial Alignment Distillation [8.046705062670096]
損失のない投機的復号化は、ターゲットとする大言語モデル推論を加速する。
FSPAD (Feature Sampling and partial Alignment Distillation for Lossless Speculative Decoding) を提案する。
我々の実験は、ヴィクナ級数とLLaMA3-インストラクト級数で最大かつ最小のモデルにおいて、欲求と非欲求デコーディングの両方を含む。
論文 参考訳(メタデータ) (2024-08-28T06:28:01Z) - Adaptive Draft-Verification for Efficient Large Language Model Decoding [24.347886232342862]
大規模言語モデル(LLM)デコードでは、与えられたコンテキストに基づいてトークンのシーケンスを生成する。
典型的な自己回帰復号法では、生成されたトークンごとに別の前方通過が必要となる。
微調整を必要とせずにLDMデコーディングを高速化するADEDを導入する。
論文 参考訳(メタデータ) (2024-06-27T22:20:39Z) - Adversarial Contrastive Decoding: Boosting Safety Alignment of Large Language Models via Opposite Prompt Optimization [34.29833630422768]
Adversarial Contrastive Decoding (ACD)は、プロンプトベースのコントラストデコーディングのための2つの逆のシステムプロンプトを生成する最適化ベースのフレームワークである。
ACDは、元の生成能力を犠牲にすることなく、従来のトレーニング不要復号法よりもはるかに優れた安全性を実現する。
論文 参考訳(メタデータ) (2024-06-24T15:51:30Z) - SDSAT: Accelerating LLM Inference through Speculative Decoding with Semantic Adaptive Tokens [4.5888031410244885]
意味適応トークン(SDSAT)を用いた投機的復号化による大規模言語モデル(LLM)の高速化手法を提案する。
この設計の主な目的は、LLMモデルの精度を損なうことなく、より正確にドラフトトークンを生成する能力を高めることである。
CodeLlama-13B と 7B で実施された実験では、それぞれ3.5X と 3.0X 以上の速度向上が達成されている。
論文 参考訳(メタデータ) (2024-03-27T14:54:27Z) - DeAL: Decoding-time Alignment for Large Language Models [59.63643988872571]
大規模言語モデル(LLM)は、現在、人間の好みに沿ったコンテンツを生成することが期待されている。
本稿では,報酬関数をカスタマイズ可能なフレームワークであるDeALを提案し,LLMのDetime Alignmentを可能にする。
実験の結果,粒度の細かいトレードオフでDeALを実現できること,アライメント目標への適合性の向上,LLMの残差の解消が可能であることがわかった。
論文 参考訳(メタデータ) (2024-02-05T06:12:29Z) - Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - Confident Adaptive Language Modeling [95.45272377648773]
CALMは、入力と生成時間ごとに異なる量の計算を動的に割り当てるフレームワークである。
ハイパフォーマンスを確実に維持しつつ、計算能力、潜在的スピードアップを最大3ドルまで削減する上で、我々のフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-14T17:00:19Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
強化学習(RL)は、任意のタスクメトリクスを報酬としてプラグインすることで、より柔軟なソリューションを提供する。
ソフトQ-ラーニングの観点からテキスト生成のための新しいRL式を導入する。
雑音/負の例から学習し、敵攻撃、即時生成など、幅広いタスクにアプローチを適用する。
論文 参考訳(メタデータ) (2021-06-14T18:48:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。