Conditional Wasserstein Distances with Applications in Bayesian OT Flow Matching
- URL: http://arxiv.org/abs/2403.18705v2
- Date: Wed, 5 Jun 2024 12:51:08 GMT
- Title: Conditional Wasserstein Distances with Applications in Bayesian OT Flow Matching
- Authors: Jannis Chemseddine, Paul Hagemann, Gabriele Steidl, Christian Wald,
- Abstract summary: In inverse problems, many conditional generative models approximate the posterior measure by minimizing a distance between the joint measure and its learned approximation.
We introduce a conditional Wasserstein distance via a set of restricted couplings that equals the expected Wasserstein distance of the posteriors.
We derive theoretical properties of the conditional Wasserstein distance, characterize the corresponding geodesics and velocity fields as well as the flow ODEs.
- Score: 1.609940380983903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In inverse problems, many conditional generative models approximate the posterior measure by minimizing a distance between the joint measure and its learned approximation. While this approach also controls the distance between the posterior measures in the case of the Kullback--Leibler divergence, this is in general not hold true for the Wasserstein distance. In this paper, we introduce a conditional Wasserstein distance via a set of restricted couplings that equals the expected Wasserstein distance of the posteriors. Interestingly, the dual formulation of the conditional Wasserstein-1 flow resembles losses in the conditional Wasserstein GAN literature in a quite natural way. We derive theoretical properties of the conditional Wasserstein distance, characterize the corresponding geodesics and velocity fields as well as the flow ODEs. Subsequently, we propose to approximate the velocity fields by relaxing the conditional Wasserstein distance. Based on this, we propose an extension of OT Flow Matching for solving Bayesian inverse problems and demonstrate its numerical advantages on an inverse problem and class-conditional image generation.
Related papers
- Iterated Schrödinger bridge approximation to Wasserstein Gradient Flows [1.5561923713703105]
We introduce a novel discretization scheme for Wasserstein gradient flows that involves successively computing Schr"odinger bridges with the same marginals.
The proposed scheme has two advantages: one, it avoids the use of the score function, and, two, it is amenable to particle-based approximations using the Sinkhorn algorithm.
arXiv Detail & Related papers (2024-06-16T07:23:26Z) - Y-Diagonal Couplings: Approximating Posteriors with Conditional
Wasserstein Distances [0.4419843514606336]
In inverse problems, many conditional generative models approximate the posterior measure by minimizing a distance between the joint measure and its learned approximation.
We will introduce a conditional Wasserstein distance with a set of restricted couplings that equals the expected Wasserstein distance of the posteriors.
arXiv Detail & Related papers (2023-10-20T11:46:05Z) - Posterior Sampling Based on Gradient Flows of the MMD with Negative Distance Kernel [2.199065293049186]
conditional flows of the maximum mean discrepancy (MMD) with the negative distance kernel for posterior sampling and conditional generative modeling.
We approximate the joint distribution of the ground truth and the observations using discrete Wasserstein gradient flows.
arXiv Detail & Related papers (2023-10-04T11:40:02Z) - Federated Wasserstein Distance [16.892296712204597]
We introduce a principled way of computing the Wasserstein distance between two distributions in a federated manner.
We show how to estimate the Wasserstein distance between two samples stored and kept on different devices/clients whilst a central entity/server orchestrates the computations.
arXiv Detail & Related papers (2023-10-03T11:30:50Z) - Sliced Wasserstein Estimation with Control Variates [47.18652387199418]
Sliced Wasserstein (SW) distances between two probability measures are defined as the expectation of the Wasserstein distance between two one-dimensional projections.
Due to the intractability of the expectation, Monte Carlo integration is performed to estimate the value of the SW distance.
Despite having various variants, there has been no prior work that improves the Monte Carlo estimation scheme for the SW distance.
arXiv Detail & Related papers (2023-04-30T06:03:17Z) - Markovian Sliced Wasserstein Distances: Beyond Independent Projections [51.80527230603978]
We introduce a new family of SW distances, named Markovian sliced Wasserstein (MSW) distance, which imposes a first-order Markov structure on projecting directions.
We compare distances with previous SW variants in various applications such as flows, color transfer, and deep generative modeling to demonstrate the favorable performance of MSW.
arXiv Detail & Related papers (2023-01-10T01:58:15Z) - Learning High Dimensional Wasserstein Geodesics [55.086626708837635]
We propose a new formulation and learning strategy for computing the Wasserstein geodesic between two probability distributions in high dimensions.
By applying the method of Lagrange multipliers to the dynamic formulation of the optimal transport (OT) problem, we derive a minimax problem whose saddle point is the Wasserstein geodesic.
We then parametrize the functions by deep neural networks and design a sample based bidirectional learning algorithm for training.
arXiv Detail & Related papers (2021-02-05T04:25:28Z) - Rethinking Rotated Object Detection with Gaussian Wasserstein Distance
Loss [111.8807588392563]
Boundary discontinuity and its inconsistency to the final detection metric have been the bottleneck for rotating detection regression loss design.
We propose a novel regression loss based on Gaussian Wasserstein distance as a fundamental approach to solve the problem.
arXiv Detail & Related papers (2021-01-28T12:04:35Z) - On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification [101.0377583883137]
Projection robust (PR) OT seeks to maximize the OT cost between two measures by choosing a $k$-dimensional subspace onto which they can be projected.
Our first contribution is to establish several fundamental statistical properties of PR Wasserstein distances.
Next, we propose the integral PR Wasserstein (IPRW) distance as an alternative to the PRW distance, by averaging rather than optimizing on subspaces.
arXiv Detail & Related papers (2020-06-22T14:35:33Z) - When OT meets MoM: Robust estimation of Wasserstein Distance [8.812837829361923]
We consider the problem of estimating the Wasserstein distance between two probability distributions when observations are polluted by outliers.
We introduce and discuss novel MoM-based robust estimators whose consistency is studied under a data contamination model.
We propose a simple MoM-based re-weighting scheme that could be used in conjunction with the Sinkhorn algorithm.
arXiv Detail & Related papers (2020-06-18T07:31:39Z) - Disentangled Representation Learning with Wasserstein Total Correlation [90.44329632061076]
We introduce Wasserstein total correlation in both variational autoencoder and Wasserstein autoencoder settings to learn disentangled latent representations.
A critic is adversarially trained along with the main objective to estimate the Wasserstein total correlation term.
We show that the proposed approach has comparable performances on disentanglement with smaller sacrifices in reconstruction abilities.
arXiv Detail & Related papers (2019-12-30T05:31:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.