論文の概要: Deep Learning for Traffic Flow Prediction using Cellular Automata-based Model and CNN-LSTM architecture
- arxiv url: http://arxiv.org/abs/2403.18710v1
- Date: Wed, 27 Mar 2024 15:57:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 16:19:17.921145
- Title: Deep Learning for Traffic Flow Prediction using Cellular Automata-based Model and CNN-LSTM architecture
- Title(参考訳): セルオートマタモデルとCNN-LSTMアーキテクチャを用いた交通流予測のためのディープラーニング
- Authors: Zhaohui Yang, Kshitij Jerath,
- Abstract要約: 近年の研究では、深層学習による交通流の予測が試みられているが、結果はまちまちである。
これらのアプローチは2つの重要な課題に直面している。まず、ディープラーニングニューラルネットワークのトレーニングには、トラフィックフローシステムではまだ利用できない大量のトレーニングデータが必要である。
第二に、データが利用可能である場合でも、ニューラルネットワークは、将来のトラフィック状態をうまく予測するために、最も可能なトラフィックフローのダイナミクスをカバーする歴史的なデータにアクセスする必要がある。
- 参考スコア(独自算出の注目度): 13.065729535009925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent works have attempted to use deep learning to predict future states of traffic flow, but have met with mixed results. These approaches face two key challenges. First, training deep learning neural networks requires large amounts of training data which are not yet easily available for traffic flow systems. Second, even when data is available, the neural networks require access to historical data that covers most possible traffic flow dynamics to successfully predict future traffic states. Specifically, these deep learning approaches do not fully leverage domain-knowledge about traffic flow dynamics, despite a significant existing knowledge-base. In this work, we propose to solve both issues using a Convolutional Neural Network (CNNs) with Long Short Term Memory (LSTM) deep learning architecture to successfully predict traffic flow, while leveraging a cellular automata-based statistical mechanics model of traffic flow to generate training and test data. Another major contribution of this paper is the insight that training data for a large traffic system can actually be sampled from the simulations of a much smaller traffic system. This is achieved through observing that the normalized energy distribution of the statistical mechanics model is scale invariant, which significantly eases the burden of data generation for large scale traffic systems. The resulting simulations indicate good agreement between the predicted and the true traffic flow dynamics.
- Abstract(参考訳): 近年の研究では、深層学習による交通流の予測が試みられているが、結果はまちまちである。
これらのアプローチは2つの大きな課題に直面します。
まず、ディープラーニングニューラルネットワークのトレーニングには、トラフィックフローシステムではまだ利用できない大量のトレーニングデータが必要である。
第二に、データが利用可能である場合でも、ニューラルネットワークは、将来のトラフィック状態をうまく予測するために、最も可能なトラフィックフローのダイナミクスをカバーする歴史的なデータにアクセスする必要がある。
特に、これらのディープラーニングアプローチは、既存の重要な知識ベースにもかかわらず、トラフィックフローのダイナミクスに関するドメイン知識を十分に活用していない。
本研究では,Long Short Term Memory (LSTM) を用いた畳み込みニューラルネットワーク(CNN)を用いて,トラフィックフローの予測を成功させるとともに,セルラーオートマトンに基づくトラフィックフローの統計力学モデルを用いてトレーニングとテストデータを生成することを提案する。
この論文のもうひとつの大きな貢献は、より小さな交通システムのシミュレーションから、大規模な交通システムのトレーニングデータを実際にサンプリングできるという洞察である。
これは、統計力学モデルの正規化エネルギー分布がスケール不変であり、大規模交通システムにおけるデータ生成の負担を大幅に軽減する。
得られたシミュレーションは、予測された交通流と真の交通流のダイナミックスとの良好な一致を示している。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Strada-LLM: Graph LLM for traffic prediction [62.2015839597764]
交通予測における大きな課題は、非常に異なる交通条件によって引き起こされる多様なデータ分散を扱うことである。
近位交通情報を考慮した交通予測のためのグラフ対応LLMを提案する。
我々は、新しいデータ分散に直面する際に、ドメイン適応を効率的にするための軽量なアプローチを採用する。
論文 参考訳(メタデータ) (2024-10-28T09:19:29Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Deep Multi-View Channel-Wise Spatio-Temporal Network for Traffic Flow Prediction [18.008631008649658]
underlineMulti-underlineView underlineChannel-wise underlineSpatio-underlineTemporal underlineNetwork (MVC-STNet)
我々は,マルチチャネル交通流予測の新たな課題について検討し,深いアンダーラインMulti-underlineViewアンダーラインChannel-wiseアンダーラインTempを提案する。
論文 参考訳(メタデータ) (2024-04-23T13:39:04Z) - Towards Explainable Traffic Flow Prediction with Large Language Models [36.86937188565623]
本稿では,Large Language Models (LLMs) に基づく交通流予測モデルを提案する。
マルチモーダルなトラフィックデータを自然言語記述に転送することで、xTP-LLMは複雑な時系列パターンと外部要因を包括的なトラフィックデータからキャプチャする。
経験的に、xTP-LLMは、ディープラーニングのベースラインと比較して、競争の正確さを示すと同時に、予測の直感的で信頼性の高い説明を提供する。
論文 参考訳(メタデータ) (2024-04-03T07:14:15Z) - TPLLM: A Traffic Prediction Framework Based on Pretrained Large Language Models [27.306180426294784]
大規模言語モデル(LLM)を利用した新しい交通予測フレームワークであるTPLLMを紹介する。
本フレームワークでは,Lonal Neural Networks (LoCNNs) に基づくシーケンス埋め込み層と,Graph Contemporalal Networks (GCNs) に基づくグラフ埋め込み層を構築し,シーケンスの特徴と空間的特徴を抽出する。
実世界の2つのデータセットの実験では、フルサンプルと数ショットの予測シナリオの両方で、満足できるパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-03-04T17:08:57Z) - Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization [87.21285093582446]
Diffusion Generative Flow Samplers (DGFS) はサンプルベースのフレームワークであり、学習プロセスを短い部分的軌道セグメントに分解することができる。
生成フローネットワーク(GFlowNets)のための理論から着想を得た。
論文 参考訳(メタデータ) (2023-10-04T09:39:05Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Data-Driven Traffic Assignment: A Novel Approach for Learning Traffic
Flow Patterns Using a Graph Convolutional Neural Network [1.3706331473063877]
本稿では,交通ネットワークのトラフィックフローパターンを学習する新しいデータ駆動手法を提案する。
我々は、グラフ畳み込みニューラルネットワーク(GCNN)と呼ばれるニューラルネットワークベースのフレームワークを開発し、その問題を解決する。
モデルのトレーニングが完了すると、大規模ネットワークのトラフィックフローを即座に決定できる。
論文 参考訳(メタデータ) (2022-02-21T19:45:15Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - TrafficStream: A Streaming Traffic Flow Forecasting Framework Based on
Graph Neural Networks and Continual Learning [10.205873494981633]
グラフニューラルネットワーク(GNN)と連続学習(CL)に基づくストリームトラフィックフロー予測フレームワークであるTrafficStreamを提案する。
新たなトラフィックパターンをマイニングするために,JS-divergence に基づくアルゴリズムを提案する。
モデルの有効性と有効性を検証するために,ストリーミングトラフィックデータセットを構築した。
論文 参考訳(メタデータ) (2021-06-11T09:42:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。