論文の概要: A Time-Enhanced Data Disentanglement Network for Traffic Flow Forecasting
- arxiv url: http://arxiv.org/abs/2506.02609v1
- Date: Tue, 03 Jun 2025 08:28:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:35.487108
- Title: A Time-Enhanced Data Disentanglement Network for Traffic Flow Forecasting
- Title(参考訳): 交通流予測のための時間拡張データ分散ネットワーク
- Authors: Tianfan Jiang, Mei Wu, Wenchao Weng, Dewen Seng, Yiqian Lin,
- Abstract要約: 交通流予測(TEDDN)のための時間拡張データ分散ネットワーク
TEDDNは、もともと複雑で絡み合ったトラフィックデータを安定したパターンとトレンドに分解する。
- 参考スコア(独自算出の注目度): 0.3203976017867677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, traffic flow prediction has become a highlight in the field of intelligent transportation systems. However, due to the temporal variations and dynamic spatial correlations of traffic data, traffic prediction remains highly challenging.Traditional spatiotemporal networks, which rely on end-to-end training, often struggle to handle the diverse data dependencies of multiple traffic flow patterns. Additionally, traffic flow variations are highly sensitive to temporal information changes. Regrettably, other researchers have not sufficiently recognized the importance of temporal information.To address these challenges, we propose a novel approach called A Time-Enhanced Data Disentanglement Network for Traffic Flow Forecasting (TEDDN). This network disentangles the originally complex and intertwined traffic data into stable patterns and trends. By flexibly learning temporal and node information through a dynamic graph enhanced by a temporal feature extraction module, TEDDN demonstrates significant efficacy in disentangling and extracting complex traffic information. Experimental evaluations and ablation studies on four real-world datasets validate the superiority of our method.
- Abstract(参考訳): 近年,インテリジェント交通システム分野において,交通流の予測が注目されている。
しかし, 交通データの時間的変動と動的空間的相関により交通予測は非常に困難であり, 複数の交通流パターンの多種多様なデータ依存性を扱うために, エンドツーエンドのトレーニングに依存するトラディショナル時空間ネットワークは困難であることが多い。
さらに、交通流の変動は時間的情報の変化に非常に敏感である。
これらの課題に対処するため,交通流予測のための時間拡張データ分散ネットワーク (TEDDN) という新しいアプローチを提案する。
このネットワークは、もともと複雑で絡み合ったトラフィックデータを安定したパターンとトレンドに分離する。
時間的特徴抽出モジュールによって強化された動的グラフを通して時間的およびノード的情報を柔軟に学習することにより、TEDDNは複雑な交通情報を切り離し、抽出する上で重要な効果を示す。
4つの実世界のデータセットに関する実験的評価とアブレーション研究により,本手法の優位性を検証した。
関連論文リスト
- Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
ドローンが捉えたデータは、大規模都市ネットワークのための正確なマルチセンサー移動観測所を作ることができる。
単純なグラフベースモデルHiMSNetは、複数のデータモダリティと学習時間相関を統合するために提案されている。
論文 参考訳(メタデータ) (2025-01-07T03:23:28Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Transport-Hub-Aware Spatial-Temporal Adaptive Graph Transformer for Traffic Flow Prediction [9.99440375621286]
本稿では交通流予測のためのトランスポート・ハブ対応時空間適応型グラフ変換器を提案する。
具体的には、動的空間依存を捉えるために、まず新しい空間自己認識モジュールを設計する。
また、トラフィックフローデータ中の動的時間パターンを検出するために、時間的自己アテンションモジュールを用いる。
論文 参考訳(メタデータ) (2023-10-12T13:44:35Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic
Forecasting [27.82230529014677]
道路網における交通状況を予測する能力は重要な機能であり、課題である。
近年の時空間グラフニューラルネットワークの提案は,交通データにおける複雑な時空間相関のモデル化において大きな進歩を遂げている。
本稿では,データ駆動方式で拡散と固有トラフィック情報を分離する分散空間時間フレームワーク(DSTF)を提案する。
論文 参考訳(メタデータ) (2022-06-18T04:14:38Z) - STCGAT: Spatial-temporal causal networks for complex urban road traffic
flow prediction [12.223433627287605]
交通データは非常に非線形であり、道路ノード間の複雑な空間的相関を持つ。
既存のアプローチでは、固定された道路ネットワークトポロジマップと独立した時系列モジュールを使用して、時空間相関をキャプチャする。
本稿では,グラフ注意ネットワーク(GAT)を介して交通ネットワークの空間依存性を捕捉し,交通データの因果関係を解析する新しい予測モデルを提案する。
論文 参考訳(メタデータ) (2022-03-21T06:38:34Z) - TSSRGCN: Temporal Spectral Spatial Retrieval Graph Convolutional Network
for Traffic Flow Forecasting [41.87633457352356]
本稿では,ネットワークのグローバル性と局所性に着目したニューラルネットワークモデルを提案する。
2つの実世界のデータセットの実験により、このモデルが交通データの空間的時間的相関を精査できることが示されている。
論文 参考訳(メタデータ) (2020-11-30T09:21:43Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。