論文の概要: Mitigating Hallucinations in Large Vision-Language Models with Instruction Contrastive Decoding
- arxiv url: http://arxiv.org/abs/2403.18715v2
- Date: Wed, 5 Jun 2024 13:53:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 00:30:45.604162
- Title: Mitigating Hallucinations in Large Vision-Language Models with Instruction Contrastive Decoding
- Title(参考訳): インストラクティブ・コントラスト・デコーディングを用いた大規模視覚言語モデルにおける幻覚の緩和
- Authors: Xintong Wang, Jingheng Pan, Liang Ding, Chris Biemann,
- Abstract要約: 本稿では,LVLM推論における幻覚の低減を目的とした,命令コントラストデコーディング(ICD)手法を提案する。
本手法は,マルチモーダル核融合モジュールにおいて,外乱指示が幻覚を著しく悪化させるという観察に着想を得たものである。
- 参考スコア(独自算出の注目度): 25.489832294197797
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Vision-Language Models (LVLMs) are increasingly adept at generating contextually detailed and coherent responses from visual inputs. However, their application in multimodal decision-making and open-ended generation is hindered by a notable rate of hallucinations, where generated text inaccurately represents the visual contents. To address this issue, this paper introduces the Instruction Contrastive Decoding (ICD) method, a novel approach designed to reduce hallucinations during LVLM inference. Our method is inspired by our observation that what we call disturbance instructions significantly exacerbate hallucinations in multimodal fusion modules. ICD contrasts distributions from standard and instruction disturbance, thereby increasing alignment uncertainty and effectively subtracting hallucinated concepts from the original distribution. Through comprehensive experiments on discriminative benchmarks (POPE and MME) and a generative benchmark (LLaVa-Bench), we demonstrate that ICD significantly mitigates both object-level and attribute-level hallucinations. Moreover, our method not only addresses hallucinations but also significantly enhances the general perception and recognition capabilities of LVLMs.
- Abstract(参考訳): LVLM(Large Vision-Language Models)は、視覚入力からコンテキスト的に詳細で一貫性のある応答を生成するのに、ますます適している。
しかし,マルチモーダルな意思決定やオープンエンドジェネレーションにおけるそれらの応用は,生成したテキストが視覚内容の不正確な表現をする幻覚の顕著な頻度によって妨げられる。
そこで本研究では,LVLM推論における幻覚の低減を目的とした,命令コントラスト復号法(ICD)を提案する。
本手法は,マルチモーダル核融合モジュールにおいて,外乱指示が幻覚を著しく悪化させるという観察に着想を得たものである。
ICDは、標準および命令障害からの分布を対比し、アライメントの不確実性を増大させ、元の分布から幻覚概念を効果的に抽出する。
識別ベンチマーク (POPE, MME) と生成ベンチマーク (LLaVa-Bench) の総合的な実験を通じて, ICDは対象レベルの幻覚と属性レベルの幻覚の両方を著しく緩和することを示した。
さらに,本手法は幻覚だけでなく,LVLMの認識能力や認識能力を著しく向上させる。
関連論文リスト
- Reducing Hallucinations in Vision-Language Models via Latent Space Steering [34.1755878632361]
幻覚は、アプリケーションに大規模な視覚言語モデル(LVLM)を配置する上での課題である。
本稿では,視覚的特徴の安定性を高めるために,視覚とテクスチュアル・インターベンション(VTI, Visual and Textual Intervention)を提案する。
論文 参考訳(メタデータ) (2024-10-21T08:42:30Z) - CODE: Contrasting Self-generated Description to Combat Hallucination in Large Multi-modal Models [51.70129969269271]
CODE(Countering Description Contrastive Decoding)という,新しいコントラストベースのデコーディング手法を提案する。
提案手法は幻覚を著しく低減し,様々なベンチマークや最先端のLMM間の相互整合性を改善する。
論文 参考訳(メタデータ) (2024-06-04T03:04:21Z) - Visual Description Grounding Reduces Hallucinations and Boosts Reasoning in LVLMs [52.497823009176074]
LVLM(Large Vision-Language Models)はしばしば、幻覚として知られる事実情報を誤認する応答を生成する。
視覚的知覚の向上とLVLMの推論能力の向上を目的とした学習自由度手法であるVisual Description Grounded Decoding (VDGD)を紹介した。
論文 参考訳(メタデータ) (2024-05-24T16:21:59Z) - Alleviating Hallucinations in Large Vision-Language Models through Hallucination-Induced Optimization [123.54980913741828]
大規模ビジュアル言語モデル(LVLM)は、マルチモーダルデータの理解において、例外的な能力を示した。
彼らは必然的に幻覚に悩まされ、生成されたテキストと対応するイメージを切断する。
現在の視覚的コントラスト復号法のほとんどは、視覚的不確実性情報を導入して幻覚を緩和しようとするものである。
しかし、彼らは幻覚トークンを正確に誘導するのに苦労し、幻覚を緩和する効果を著しく制限した。
論文 参考訳(メタデータ) (2024-05-24T08:46:31Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [48.065569871444275]
我々は,LVLM(Large Vision Language Models)における幻覚の検出と緩和について,きめ細かいAIフィードバックを用いて提案する。
プロプライエタリモデルによる小型幻覚アノテーションデータセットを生成する。
そこで本研究では,幻覚緩和モデルの訓練のための選好データセットを自動構築する検出テーマ書き換えパイプラインを提案する。
論文 参考訳(メタデータ) (2024-04-22T14:46:10Z) - IBD: Alleviating Hallucinations in Large Vision-Language Models via
Image-Biased Decoding [37.16880672402059]
言語的先行性への過度な依存は幻覚に繋がる重要な要因として認識されている。
本稿では,新しい画像バイアスデコーディング手法を導入することにより,この問題を軽減することを提案する。
提案手法は,従来のLVLMと画像バイアスLVLMの予測を対比することにより,次の確率分布を導出する。
論文 参考訳(メタデータ) (2024-02-28T16:57:22Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
大規模言語モデル(LLM)は、不正確な情報や製造された情報を含む応答を生成するために観察されている。
幻覚を緩和するための単純なtextitInduce-then-Contrast Decoding (ICD) 戦略を提案する。
論文 参考訳(メタデータ) (2023-12-25T12:32:49Z) - Mitigating Object Hallucinations in Large Vision-Language Models through
Visual Contrastive Decoding [125.05295513481035]
本稿では,オリジナルおよび歪曲された視覚入力から出力分布を対比する,シンプルでトレーニングのないVisual Contrastive Decoding(VCD)を紹介する。
提案したVCDは, 対象幻覚の2つの重要な原因である, 統計的偏見と単調な先行性に対する信頼度を効果的に低減する。
実験の結果,付加的なトレーニングや外部ツールの使用がなければ,異なるLVLMファミリーにおける物体幻覚の問題を著しく軽減できることがわかった。
論文 参考訳(メタデータ) (2023-11-28T16:26:35Z) - Zero-Resource Hallucination Prevention for Large Language Models [45.4155729393135]
ハロシン化(Hallucination)とは、大規模言語モデル(LLM)が事実的に不正確な情報を生成する事例を指す。
本稿では,SELF-FAMILIARITYと呼ばれる,入力命令に含まれる概念に対するモデルの親しみ度を評価する新しい自己評価手法を提案する。
4つの異なる大言語モデルでSELF-FAMILIARITYを検証し、既存の手法と比較して一貫して優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-06T01:57:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。