論文の概要: CaT: Constraints as Terminations for Legged Locomotion Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2403.18765v1
- Date: Wed, 27 Mar 2024 17:03:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 15:59:48.023147
- Title: CaT: Constraints as Terminations for Legged Locomotion Reinforcement Learning
- Title(参考訳): CaT: 足の運動強化学習の終端としての制約
- Authors: Elliot Chane-Sane, Pierre-Alexandre Leziart, Thomas Flayols, Olivier Stasse, Philippe Souères, Nicolas Mansard,
- Abstract要約: 現在の解決者は、厳しい制約を尊重する効率的なポリシーを作成できない。
本稿では,制約付きRLアルゴリズムCaTとしてConstraintsを提案する。
ビデオとコードはhttps://constraints-as-termminations.ioで公開されている。
- 参考スコア(独自算出の注目度): 23.76366118253271
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Reinforcement Learning (RL) has demonstrated impressive results in solving complex robotic tasks such as quadruped locomotion. Yet, current solvers fail to produce efficient policies respecting hard constraints. In this work, we advocate for integrating constraints into robot learning and present Constraints as Terminations (CaT), a novel constrained RL algorithm. Departing from classical constrained RL formulations, we reformulate constraints through stochastic terminations during policy learning: any violation of a constraint triggers a probability of terminating potential future rewards the RL agent could attain. We propose an algorithmic approach to this formulation, by minimally modifying widely used off-the-shelf RL algorithms in robot learning (such as Proximal Policy Optimization). Our approach leads to excellent constraint adherence without introducing undue complexity and computational overhead, thus mitigating barriers to broader adoption. Through empirical evaluation on the real quadruped robot Solo crossing challenging obstacles, we demonstrate that CaT provides a compelling solution for incorporating constraints into RL frameworks. Videos and code are available at https://constraints-as-terminations.github.io.
- Abstract(参考訳): 深層強化学習(Deep Reinforcement Learning, RL)は、四足歩行のような複雑なロボットタスクを解くという、驚くべき結果を実証している。
しかし、現在の解決者は、厳しい制約を尊重する効率的なポリシーを作成できない。
本研究では,制約をロボット学習に統合し,新しい制約付きRLアルゴリズムであるConstraints as Terminations (CaT)を提案する。
古典的制約付きRLの定式化とは別に、政策学習中の確率的項による制約を再構築する: 制約の違反は、RLエージェントが達成可能な将来的な報酬を終了する確率を誘導する。
本稿では,ロボット学習において広く使われているRLアルゴリズムを最小限に修正することで,この定式化に対するアルゴリズム的アプローチを提案する。
提案手法は, 複雑化や計算オーバーヘッドを伴わずに, 制約の厳密化を図り, より広範な採用の障壁を緩和する。
実四足歩行ロボットSoloを用いた実証評価により,CaTが制約をRLフレームワークに組み込むための説得力のあるソリューションであることを実証した。
ビデオとコードはhttps://constraints-as-termminations.github.io.comで公開されている。
関連論文リスト
- Constrained Reinforcement Learning with Smoothed Log Barrier Function [27.216122901635018]
CSAC-LB (Constrained Soft Actor-Critic with Log Barrier Function) と呼ばれる新しい制約付きRL法を提案する。
線形スムーズなログバリア関数を追加の安全評論家に適用することにより、事前トレーニングなしで競争性能を達成する。
CSAC-LBでは,様々な難易度を有する制約付き制御タスクにおいて,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-03-21T16:02:52Z) - Improving Large Language Models via Fine-grained Reinforcement Learning with Minimum Editing Constraint [104.53687944498155]
強化学習(RL)は、大規模言語モデル(LLM)の訓練に広く用いられている。
本稿では,報酬モデルとして生成モデルを組み込んだRL法 RLMEC を提案する。
生成報酬モデルに基づいて、トレーニングのためのトークンレベルRL目標と、RLプロセスの安定化のための模倣ベース正規化を設計する。
論文 参考訳(メタデータ) (2024-01-11T17:58:41Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
オフライン強化学習(RL)パラダイムは、静的な行動データセットを、データを収集したポリシーよりも優れたパフォーマンスのポリシーに変換するためのレシピを提供する。
本稿では,アクション量子化のための適応型スキームを提案する。
IQL,CQL,BRACといった最先端のオフラインRL手法が,提案手法と組み合わせることで,ベンチマークのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2023-10-18T06:07:10Z) - A Multiplicative Value Function for Safe and Efficient Reinforcement
Learning [131.96501469927733]
本稿では,安全評論家と報酬評論家からなる新しい乗法値関数を持つモデルフリーRLアルゴリズムを提案する。
安全評論家は、制約違反の確率を予測し、制限のないリターンのみを見積もる報酬批評家を割引する。
安全制約を付加した古典的RLベンチマークや、画像を用いたロボットナビゲーションタスク、生のライダースキャンを観察する4つの環境において、本手法の評価を行った。
論文 参考訳(メタデータ) (2023-03-07T18:29:15Z) - Handling Long and Richly Constrained Tasks through Constrained
Hierarchical Reinforcement Learning [20.280636126917614]
目標の安全性 強化学習(RL)の設定は通常、軌道上の制約によって処理される。
本稿では,上位レベルの制約付き検索エージェントと下位レベルの目標条件付きRLエージェントを組み合わせた(安全)階層型強化学習(CoSHRL)機構を提案する。
CoSHRLの大きな利点は、コスト値分布の制約を処理でき、再トレーニングなしに柔軟な制約しきい値に調整できることである。
論文 参考訳(メタデータ) (2023-02-21T12:57:12Z) - Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks [59.419152768018506]
最適ポリシーは必ずk-SP制約を満たすことを示す。
本研究では,SP制約に違反するポリシーを完全に排除する代わりに,新たなコスト関数を提案する。
また,MiniGrid,DeepMind Lab,Atari,Fetchを用いた実験の結果,提案手法はPPOを著しく改善することが示された。
論文 参考訳(メタデータ) (2021-07-13T21:39:21Z) - Model-based Safe Reinforcement Learning using Generalized Control
Barrier Function [6.556257209888797]
本稿では,制約付きRLのモデルに基づく実現性向上手法を提案する。
モデル情報を使用することで、実際の安全制約に違反することなく、ポリシーを安全に最適化することができる。
提案手法は最大4倍の制約違反を達成し、ベースライン制約RLアプローチよりも3.36倍の速度で収束する。
論文 参考訳(メタデータ) (2021-03-02T08:17:38Z) - Assured RL: Reinforcement Learning with Almost Sure Constraints [0.0]
我々は、状態遷移とアクション三重項に対するほぼ確実に制約のあるマルコフ決定過程の最適方針を求める問題を考える。
バリアベースの分解を満たす値とアクション値関数を定義する。
我々は,Q-Learningに基づくバリア学習アルゴリズムを開発し,そのような安全でない状態-動作ペアを同定する。
論文 参考訳(メタデータ) (2020-12-24T00:29:28Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
我々は,制約付きポリシー最適化(CPPO)の実装に基づくRLフレームワークであるGCPOを紹介する。
誘導制約付きRLは所望の最適値に近い高速収束を実現し,正確な報酬関数チューニングを必要とせず,最適かつ物理的に実現可能なロボット制御動作を実現することを示す。
論文 参考訳(メタデータ) (2020-02-22T10:15:53Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
線形時間論理(LTL)を用いて未知の連続状態/動作マルコフ決定過程(MDP)のゴールを定式化できるモデルフリーなRLアルゴリズムを提案する。
このアルゴリズムは、トレースが仕様を最大確率で満たす制御ポリシーを合成することが保証される。
論文 参考訳(メタデータ) (2019-02-02T20:09:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。