Efficient Generation of Multi-partite Entanglement between Non-local Superconducting Qubits using Classical Feedback
- URL: http://arxiv.org/abs/2403.18768v1
- Date: Wed, 27 Mar 2024 17:06:00 GMT
- Title: Efficient Generation of Multi-partite Entanglement between Non-local Superconducting Qubits using Classical Feedback
- Authors: Akel Hashim, Ming Yuan, Pranav Gokhale, Larry Chen, Christian Juenger, Neelay Fruitwala, Yilun Xu, Gang Huang, Liang Jiang, Irfan Siddiqi,
- Abstract summary: In gate-based quantum computing, the creation of entangled states or the distribution of entanglement across a quantum processor often requires circuit depths which grow with the number of entangled qubits.
In teleportation-based quantum computing, one can deterministically generate entangled states with a circuit depth that is constant in the number of qubits.
- Score: 14.740159711831723
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum entanglement is one of the primary features which distinguishes quantum computers from classical computers. In gate-based quantum computing, the creation of entangled states or the distribution of entanglement across a quantum processor often requires circuit depths which grow with the number of entangled qubits. However, in teleportation-based quantum computing, one can deterministically generate entangled states with a circuit depth that is constant in the number of qubits, provided that one has access to an entangled resource state, the ability to perform mid-circuit measurements, and can rapidly transmit classical information. In this work, aided by fast classical FPGA-based control hardware with a feedback latency of only 150 ns, we explore the utility of teleportation-based protocols for generating non-local, multi-partite entanglement between superconducting qubits. First, we demonstrate well-known protocols for generating Greenberger-Horne-Zeilinger (GHZ) states and non-local CNOT gates in constant depth. Next, we utilize both protocols for implementing an unbounded fan-out (i.e., controlled-NOT-NOT) gate in constant depth between three non-local qubits. Finally, we demonstrate deterministic state teleportation and entanglement swapping between qubits on opposite side of our quantum processor.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Scaling quantum computing with dynamic circuits [0.6990493129893112]
Quantum computers process information with the laws of quantum mechanics.
Current quantum hardware is noisy, can only store information for a short time, and is limited to a few quantum bits, i.e., qubits.
Here we overcome these limitations with error mitigated dynamic circuits and circuit-cutting to create quantum states requiring a periodic connectivity employing up to 142 qubits.
arXiv Detail & Related papers (2024-02-27T19:00:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Universal Quantum Computing with Field-Mediated Unruh--DeWitt Qubits [0.0]
A set of universal quantum gates is a vital part of the theory of quantum computing.
UDW detectors in simple settings enable a collection of gates known to provide universal quantum computing.
arXiv Detail & Related papers (2024-02-15T18:19:45Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Native Conditional $i$SWAP Operation with Superconducting Artificial
Atoms [14.279979630349288]
Coherent devices which process quantum states are required to route the quantum states that encode information.
In this paper we demonstrate experimentally the smallest quantum transistor with a superconducting quantum processor.
The architecture has strong potential in quantum information processing applications with superconducting qubits.
arXiv Detail & Related papers (2022-03-18T08:16:51Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Deterministic one-way logic gates on a cloud quantum computer [1.4615254965614237]
One-way quantum computing is a promising candidate for fault-tolerant quantum computing.
We propose new protocols to realize a deterministic one-way CNOT gate and one-way $X$-rotations on quantum-computing platforms.
arXiv Detail & Related papers (2021-08-09T08:20:44Z) - Location qubits in a multi-quantum-dot system [0.0]
We introduce novel location qubits, describe a method to construct a universal set of all-optical quantum gates, and simulate their performance in realistic structures.
Our results show that location qubits can maintain coherence 5 orders of magnitude longer than single-qubit operation time, and single-qubit gate errors do not exceed 0.01%.
arXiv Detail & Related papers (2021-07-13T10:00:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.