Location qubits in a multi-quantum-dot system
- URL: http://arxiv.org/abs/2107.05960v1
- Date: Tue, 13 Jul 2021 10:00:16 GMT
- Title: Location qubits in a multi-quantum-dot system
- Authors: Dayang Li, Nika Akopian
- Abstract summary: We introduce novel location qubits, describe a method to construct a universal set of all-optical quantum gates, and simulate their performance in realistic structures.
Our results show that location qubits can maintain coherence 5 orders of magnitude longer than single-qubit operation time, and single-qubit gate errors do not exceed 0.01%.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A physical platform for nodes of the envisioned quantum internet is
long-sought. Here we propose such a platform, along with a conceptually simple
and experimentally uncomplicated quantum information processing scheme,
realized in a system of multiple crystal-phase quantum dots. We introduce novel
location qubits, describe a method to construct a universal set of all-optical
quantum gates, and simulate their performance in realistic structures,
including decoherence sources. Our results show that location qubits can
maintain coherence 5 orders of magnitude longer than single-qubit operation
time, and single-qubit gate errors do not exceed 0.01%. Our scheme paves a
clear way towards constructing multi-qubit solid-state quantum systems with a
built-in photonic interface, such as a multi-qubit quantum register -- a key
building block of the forthcoming quantum internet.
Related papers
- Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Distributed quantum architecture search [0.0]
Variational quantum algorithms, inspired by neural networks, have become a novel approach in quantum computing.
Quantum architecture search tackles this by adjusting circuit structures along with gate parameters to automatically discover high-performance circuit structures.
We propose an end-to-end distributed quantum architecture search framework, where we aim to automatically design distributed quantum circuit structures for interconnected quantum processing units with specific qubit connectivity.
arXiv Detail & Related papers (2024-03-10T13:28:56Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Cavity-enhanced quantum network nodes [0.0]
A future quantum network will consist of quantum processors that are connected by quantum channels.
I will describe how optical resonators facilitate quantum network nodes.
arXiv Detail & Related papers (2022-05-30T18:50:35Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Universal deterministic quantum operations in microwave quantum links [0.0]
We propose a realistic setup, inspired by already existing experiments, within which we develop a general formalism for the implementation of distributed quantum gates.
We identify the most relevant imperfections in the quantum links as well as optimal points of operation with resulting infidelities of $1-F approx 10-2-10-3$.
arXiv Detail & Related papers (2021-10-05T14:45:13Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - A P4 Data Plane for the Quantum Internet [68.97335984455059]
A new -- quantum -- network stack will be needed to account for the fundamentally new properties of quantum entanglement.
In the non-quantum world, programmable data planes have broken the pattern of ossification of the protocol stack.
We demonstrate how we use P4$_16$ to explore abstractions and device architectures for quantum networks.
arXiv Detail & Related papers (2020-10-21T19:37:23Z) - Realising and compressing quantum circuits with quantum reservoir
computing [2.834895018689047]
We show how a random network of quantum nodes can be used as a robust hardware for quantum computing.
Our network architecture induces quantum operations by optimising only a single layer of quantum nodes.
In the few-qubit regime, sequences of multiple quantum gates in quantum circuits can be compressed with a single operation.
arXiv Detail & Related papers (2020-03-21T03:29:16Z) - Quantum circuits for the realization of equivalent forms of
one-dimensional discrete-time quantum walks on near-term quantum hardware [1.400804591672331]
Quantum walks are a promising framework for developing quantum algorithms and quantum simulations.
We present different forms of discrete-time quantum walks (DTQWs) and show their equivalence for physical realizations.
arXiv Detail & Related papers (2020-01-30T07:29:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.