Clinical Domain Knowledge-Derived Template Improves Post Hoc AI Explanations in Pneumothorax Classification
- URL: http://arxiv.org/abs/2403.18871v1
- Date: Tue, 26 Mar 2024 11:40:06 GMT
- Title: Clinical Domain Knowledge-Derived Template Improves Post Hoc AI Explanations in Pneumothorax Classification
- Authors: Han Yuan, Chuan Hong, Pengtao Jiang, Gangming Zhao, Nguyen Tuan Anh Tran, Xinxing Xu, Yet Yen Yan, Nan Liu,
- Abstract summary: We propose a template-guided approach to incorporate the clinical knowledge of pneumothorax into model explanations.
Our approach first generates a template that represents potential areas of pneumothorax occurrence.
This template is then superimposed on model explanations to filter out extraneous explanations.
- Score: 17.369709288291393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: Pneumothorax is an acute thoracic disease caused by abnormal air collection between the lungs and chest wall. To address the opaqueness often associated with deep learning (DL) models, explainable artificial intelligence (XAI) methods have been introduced to outline regions related to pneumothorax diagnoses made by DL models. However, these explanations sometimes diverge from actual lesion areas, highlighting the need for further improvement. Method: We propose a template-guided approach to incorporate the clinical knowledge of pneumothorax into model explanations generated by XAI methods, thereby enhancing the quality of these explanations. Utilizing one lesion delineation created by radiologists, our approach first generates a template that represents potential areas of pneumothorax occurrence. This template is then superimposed on model explanations to filter out extraneous explanations that fall outside the template's boundaries. To validate its efficacy, we carried out a comparative analysis of three XAI methods with and without our template guidance when explaining two DL models in two real-world datasets. Results: The proposed approach consistently improved baseline XAI methods across twelve benchmark scenarios built on three XAI methods, two DL models, and two datasets. The average incremental percentages, calculated by the performance improvements over the baseline performance, were 97.8% in Intersection over Union (IoU) and 94.1% in Dice Similarity Coefficient (DSC) when comparing model explanations and ground-truth lesion areas. Conclusions: In the context of pneumothorax diagnoses, we proposed a template-guided approach for improving AI explanations. We anticipate that our template guidance will forge a fresh approach to elucidating AI models by integrating clinical domain expertise.
Related papers
- Transparent and Clinically Interpretable AI for Lung Cancer Detection in Chest X-Rays [2.380494879018844]
Existing post-hoc XAI techniques have been shown to have poor performance on medical data.
We propose an ante-hoc approach based on concept bottleneck models which introduces for the first time clinical concepts into the classification pipeline.
Our approach yields improved classification performance in lung cancer detection when compared to baseline deep learning models.
arXiv Detail & Related papers (2024-03-28T14:15:13Z) - Variational Autoencoders for Feature Exploration and Malignancy
Prediction of Lung Lesions [0.0]
Lung cancer is responsible for 21% of cancer deaths in the UK.
Recent studies have demonstrated the capability of AI methods for accurate and early diagnosis of lung cancer from routine scans.
This study investigates the application Variational Autoencoders (VAEs), a type of generative AI model, to lung cancer lesions.
arXiv Detail & Related papers (2023-11-27T11:12:33Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Towards Trust of Explainable AI in Thyroid Nodule Diagnosis [0.0]
We apply state-of-the-art eXplainable artificial intelligence (XAI) methods to explain the prediction of the black-box AI models in the thyroid nodule diagnosis application.
We propose new statistic-based XAI methods, namely Kernel Density Estimation and Density map, to explain the case of no nodule detected.
arXiv Detail & Related papers (2023-03-08T17:18:13Z) - A Data Augmentation Method and the Embedding Mechanism for Detection and
Classification of Pulmonary Nodules on Small Samples [10.006124666261229]
Two strategies have been introduced: a new data augmentation method and a embedding mechanism.
The result of the 3DVNET model with the augmentation method for pulmonary nodule detection shows that the proposed data augmentation method outperforms the method based on generative adversarial network (GAN) framework.
arXiv Detail & Related papers (2023-03-02T13:58:45Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Ensembling Handcrafted Features with Deep Features: An Analytical Study
for Classification of Routine Colon Cancer Histopathological Nuclei Images [13.858624044986815]
We have used F1-measure, Precision, Recall, AUC, and Cross-Entropy Loss to analyse the performance of our approaches.
We observed from the results that the DL features ensemble bring a marked improvement in the overall performance of the model.
arXiv Detail & Related papers (2022-02-22T06:48:50Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.