論文の概要: Measuring Political Bias in Large Language Models: What Is Said and How It Is Said
- arxiv url: http://arxiv.org/abs/2403.18932v1
- Date: Wed, 27 Mar 2024 18:22:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 18:11:43.876090
- Title: Measuring Political Bias in Large Language Models: What Is Said and How It Is Said
- Title(参考訳): 大規模言語モデルにおける政治的バイアスの測定:何が語られるか、どのように語られるか
- Authors: Yejin Bang, Delong Chen, Nayeon Lee, Pascale Fung,
- Abstract要約: 政治問題に関するコンテンツの内容とスタイルの両方を分析し,LLMにおける政治的偏見を測定することを提案する。
提案尺度は, 生殖権や気候変動などの異なる政治課題を, それらのバイアスの内容(世代的物質)と様式(語彙的極性)の両方で考察する。
- 参考スコア(独自算出の注目度): 46.1845409187583
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose to measure political bias in LLMs by analyzing both the content and style of their generated content regarding political issues. Existing benchmarks and measures focus on gender and racial biases. However, political bias exists in LLMs and can lead to polarization and other harms in downstream applications. In order to provide transparency to users, we advocate that there should be fine-grained and explainable measures of political biases generated by LLMs. Our proposed measure looks at different political issues such as reproductive rights and climate change, at both the content (the substance of the generation) and the style (the lexical polarity) of such bias. We measured the political bias in eleven open-sourced LLMs and showed that our proposed framework is easily scalable to other topics and is explainable.
- Abstract(参考訳): 政治問題に関するコンテンツの内容とスタイルの両方を分析し,LLMにおける政治的偏見を測定することを提案する。
既存のベンチマークと指標は、性別と人種の偏見に焦点を当てている。
しかし、政治的バイアスはLLMに存在し、下流のアプリケーションでは分極やその他の害をもたらす可能性がある。
ユーザに対して透明性を提供するためには,LLMが生み出す政治的偏見の細粒化と説明可能な尺度が必要である,と我々は主張する。
提案尺度は, 生殖権や気候変動などの異なる政治課題を, それらのバイアスの内容(世代的物質)と様式(語彙的極性)の両方で考察する。
我々は11のオープンソースLDMの政治的バイアスを測定し、提案するフレームワークが他のトピックに容易にスケーラブルであり、説明可能であることを示した。
関連論文リスト
- Unpacking Political Bias in Large Language Models: Insights Across Topic Polarization [6.253258189994455]
人間社会における普遍的な現象としての政治的偏見は、大規模言語モデルに移される可能性がある。
政治バイアスは、モデルスケールとリリース日とともに進化し、LLMの地域要因にも影響される。
論文 参考訳(メタデータ) (2024-12-21T19:42:40Z) - Political-LLM: Large Language Models in Political Science [159.95299889946637]
大規模言語モデル(LLM)は、政治科学のタスクで広く採用されている。
政治LLMは、LLMを計算政治科学に統合する包括的な理解を促進することを目的としている。
論文 参考訳(メタデータ) (2024-12-09T08:47:50Z) - Evaluating Implicit Bias in Large Language Models by Attacking From a Psychometric Perspective [66.34066553400108]
我々は、ある人口層に対する大きな言語モデルの暗黙の偏見を厳格に評価する。
心理測定の原則にインスパイアされた我々は,3つの攻撃的アプローチ,すなわち,軽視,軽視,指導を提案する。
提案手法は,LLMの内部バイアスを競合ベースラインよりも効果的に引き出すことができる。
論文 参考訳(メタデータ) (2024-06-20T06:42:08Z) - Whose Side Are You On? Investigating the Political Stance of Large Language Models [56.883423489203786]
大規模言語モデル(LLM)の政治的指向性について,8つのトピックのスペクトルにわたって検討する。
我々の調査は、中絶からLGBTQ問題まで8つのトピックにまたがるLLMの政治的整合性について考察している。
この結果から,ユーザはクエリ作成時に留意すべきであり,中立的なプロンプト言語を選択する際には注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2024-03-15T04:02:24Z) - The Political Preferences of LLMs [0.0]
私は、テストテイカーの政治的嗜好を特定するために、11の政治的指向テストを実行し、24の最先端の会話型LLMを実行します。
ほとんどの会話型LLMは、ほとんどの政治的テスト機器によって、中心の視点の好みを示すものとして認識される応答を生成する。
LLMは、スーパービジョンファインチューニングを通じて、政治スペクトルの特定の場所に向けて操れることを実証します。
論文 参考訳(メタデータ) (2024-02-02T02:43:10Z) - Inducing Political Bias Allows Language Models Anticipate Partisan
Reactions to Controversies [5.958974943807783]
本研究では,Large Language Models (LLMs) を用いたデジタル談話における政治的偏見の理解の課題に対処する。
本稿では,Partisan Bias Divergence AssessmentとPartisan Class Tendency Predictionからなる包括的分析フレームワークを提案する。
以上の結果から,感情的・道徳的ニュアンスを捉えたモデルの有効性が明らかとなった。
論文 参考訳(メタデータ) (2023-11-16T08:57:53Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
大規模言語モデル(LLM)は、これらのモデルにおけるバイアスの頻度とその緩和に関する激しい議論を引き起こしている。
本稿では,意思決定プロセスに寄与する属性の抽出と仲介を行うためのプロンプトベースの手法を提案する。
観察された異なる治療は、少なくとも部分的には、属性の相違とモデルの相違によるものであることが判明した。
論文 参考訳(メタデータ) (2023-11-15T00:02:25Z) - Diverse Perspectives Can Mitigate Political Bias in Crowdsourced Content
Moderation [5.470971742987594]
ソーシャルメディア企業は、プラットフォーム上の政治コンテンツを取り巻くコンテンツモデレーションポリシーの定義と強化に不満を抱いている。
このタスクにおいて、人間のラベルがどの程度うまく機能するか、あるいは、バイアスがこのプロセスに影響を及ぼすかどうかは不明だ。
集団労働者による政治内容の特定の実現可能性と実践性を実験的に評価した。
論文 参考訳(メタデータ) (2023-05-23T20:10:43Z) - NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias [54.89737992911079]
様々な政治スペクトルの複数のニュース見出しから中立的な要約を生成する新しい課題を提案する。
最も興味深い観察の1つは、生成モデルは、事実的に不正確なコンテンツや検証不可能なコンテンツだけでなく、政治的に偏ったコンテンツにも幻覚を与えることができることである。
論文 参考訳(メタデータ) (2022-04-11T07:06:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。