Random Aggregate Beamforming for Over-the-Air Federated Learning in Large-Scale Networks
- URL: http://arxiv.org/abs/2403.18946v1
- Date: Tue, 20 Feb 2024 23:59:45 GMT
- Title: Random Aggregate Beamforming for Over-the-Air Federated Learning in Large-Scale Networks
- Authors: Chunmei Xu, Shengheng Liu, Yongming Huang, Bjorn Ottersten, Dusit Niyato,
- Abstract summary: We consider a joint device selection and aggregate beamforming design with the objectives of minimizing the aggregate error and maximizing the number of selected devices.
To tackle the problems in a cost-effective manner, we propose a random aggregate beamforming-based scheme.
We additionally use analysis to study the obtained aggregate error and the number of the selected devices when the number of devices becomes large.
- Score: 66.18765335695414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: At present, there is a trend to deploy ubiquitous artificial intelligence (AI) applications at the edge of the network. As a promising framework that enables secure edge intelligence, federated learning (FL) has received widespread attention, and over-the-air computing (AirComp) has been integrated to further improve the communication efficiency. In this paper, we consider a joint device selection and aggregate beamforming design with the objectives of minimizing the aggregate error and maximizing the number of selected devices. This yields a combinatorial problem, which is difficult to solve especially in large-scale networks. To tackle the problems in a cost-effective manner, we propose a random aggregate beamforming-based scheme, which generates the aggregator beamforming vector via random sampling rather than optimization. The implementation of the proposed scheme does not require the channel estimation. We additionally use asymptotic analysis to study the obtained aggregate error and the number of the selected devices when the number of devices becomes large. Furthermore, a refined method that runs with multiple randomizations is also proposed for performance improvement. Extensive simulation results are presented to demonstrate the effectiveness of the proposed random aggregate beamforming-based scheme as well as the refined method.
Related papers
- Device Scheduling for Relay-assisted Over-the-Air Aggregation in
Federated Learning [9.735236606901038]
Federated learning (FL) leverages data distributed at the edge of the network to enable intelligent applications.
In this paper, we propose a relay-assisted FL framework, and investigate the device scheduling problem in relay-assisted FL systems.
arXiv Detail & Related papers (2023-12-15T03:04:39Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Over-the-Air Multi-Task Federated Learning Over MIMO Interference
Channel [17.362158131772127]
We study over-the-air multi-task FL (OA-MTFL) over the multiple-input multiple-output (MIMO) interference channel.
We propose a novel model aggregation method for the alignment of local gradients for different devices.
We show that due to the use of the new model aggregation method, device selection is no longer essential to our scheme.
arXiv Detail & Related papers (2021-12-27T10:42:04Z) - Resource-constrained Federated Edge Learning with Heterogeneous Data:
Formulation and Analysis [8.863089484787835]
We propose a distributed approximate Newton-type Newton-type training scheme, namely FedOVA, to solve the heterogeneous statistical challenge brought by heterogeneous data.
FedOVA decomposes a multi-class classification problem into more straightforward binary classification problems and then combines their respective outputs using ensemble learning.
arXiv Detail & Related papers (2021-10-14T17:35:24Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Joint Deep Reinforcement Learning and Unfolding: Beam Selection and
Precoding for mmWave Multiuser MIMO with Lens Arrays [54.43962058166702]
millimeter wave (mmWave) multiuser multiple-input multiple-output (MU-MIMO) systems with discrete lens arrays have received great attention.
In this work, we investigate the joint design of a beam precoding matrix for mmWave MU-MIMO systems with DLA.
arXiv Detail & Related papers (2021-01-05T03:55:04Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Federated Learning via Intelligent Reflecting Surface [30.935389187215474]
Over-the-air computation algorithm (AirComp) based learning (FL) is capable of achieving fast model aggregation by exploiting the waveform superposition property of multiple access channels.
In this paper, we propose a two-step optimization framework to achieve fast yet reliable model aggregation for AirComp-based FL.
Simulation results will demonstrate that our proposed framework and the deployment of an IRS can achieve a lower training loss and higher FL prediction accuracy than the baseline algorithms.
arXiv Detail & Related papers (2020-11-10T11:29:57Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.