Low-Rank Rescaled Vision Transformer Fine-Tuning: A Residual Design Approach
- URL: http://arxiv.org/abs/2403.19067v1
- Date: Thu, 28 Mar 2024 00:14:53 GMT
- Title: Low-Rank Rescaled Vision Transformer Fine-Tuning: A Residual Design Approach
- Authors: Wei Dong, Xing Zhang, Bihui Chen, Dawei Yan, Zhijun Lin, Qingsen Yan, Peng Wang, Yang Yang,
- Abstract summary: Fine-tuning for pre-trained Vision Transformers aims to adeptly tailor a model to downstream tasks.
Striking a balance between retaining the generalizable representation capacity of the pre-trained model and acquiring task-specific features is a key challenge.
We propose a Residual-based Low-Rank Rescaling (RLRR) fine-tuning strategy.
- Score: 17.678759882763078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameter-efficient fine-tuning for pre-trained Vision Transformers aims to adeptly tailor a model to downstream tasks by learning a minimal set of new adaptation parameters while preserving the frozen majority of pre-trained parameters. Striking a balance between retaining the generalizable representation capacity of the pre-trained model and acquiring task-specific features poses a key challenge. Currently, there is a lack of focus on guiding this delicate trade-off. In this study, we approach the problem from the perspective of Singular Value Decomposition (SVD) of pre-trained parameter matrices, providing insights into the tuning dynamics of existing methods. Building upon this understanding, we propose a Residual-based Low-Rank Rescaling (RLRR) fine-tuning strategy. This strategy not only enhances flexibility in parameter tuning but also ensures that new parameters do not deviate excessively from the pre-trained model through a residual design. Extensive experiments demonstrate that our method achieves competitive performance across various downstream image classification tasks, all while maintaining comparable new parameters. We believe this work takes a step forward in offering a unified perspective for interpreting existing methods and serves as motivation for the development of new approaches that move closer to effectively considering the crucial trade-off mentioned above. Our code is available at \href{https://github.com/zstarN70/RLRR.git}{https://github.com/zstarN70/RLRR.git}.
Related papers
- Sparse Orthogonal Parameters Tuning for Continual Learning [34.462967722928724]
Continual learning methods based on pre-trained models (PTM) have recently gained attention which adapt to successive downstream tasks without catastrophic forgetting.
We propose a novel yet effective method called SoTU (Sparse Orthogonal Parameters TUning)
arXiv Detail & Related papers (2024-11-05T05:19:09Z) - Meta-Learning Adaptable Foundation Models [37.458141335750696]
We introduce a meta-learning framework infused with PEFT in this intermediate retraining stage to learn a model that can be easily adapted to unseen tasks.
In this setting, we demonstrate the suboptimality of standard retraining for finding an adaptable set of parameters.
We then apply these theoretical insights to retraining the RoBERTa model to predict the continuation of conversations within the ConvAI2 dataset.
arXiv Detail & Related papers (2024-10-29T17:24:18Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.
We propose a novel model fine-tuning method to make full use of these ineffective parameters.
Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer: A Disentangled Approach [87.8330887605381]
We show how to adapt a pre-trained Vision Transformer to downstream recognition tasks with only a few learnable parameters.
We synthesize a task-specific query with a learnable and lightweight module, which is independent of the pre-trained model.
Our method achieves state-of-the-art performance under memory constraints, showcasing its applicability in real-world situations.
arXiv Detail & Related papers (2024-07-09T15:45:04Z) - Efficient Adaptation of Large Vision Transformer via Adapter
Re-Composing [8.88477151877883]
High-capacity pre-trained models have revolutionized problem-solving in computer vision.
We propose a novel Adapter Re-Composing (ARC) strategy that addresses efficient pre-trained model adaptation.
Our approach considers the reusability of adaptation parameters and introduces a parameter-sharing scheme.
arXiv Detail & Related papers (2023-10-10T01:04:15Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.