論文の概要: Synthetic Medical Imaging Generation with Generative Adversarial Networks For Plain Radiographs
- arxiv url: http://arxiv.org/abs/2403.19107v1
- Date: Thu, 28 Mar 2024 02:51:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 17:32:29.561421
- Title: Synthetic Medical Imaging Generation with Generative Adversarial Networks For Plain Radiographs
- Title(参考訳): 合成医用医用画像生成装置の開発
- Authors: John R. McNulty, Lee Kho, Alexandria L. Case, Charlie Fornaca, Drew Johnston, David Slater, Joshua M. Abzug, Sybil A. Russell,
- Abstract要約: 本研究の目的は、再利用可能なオープンソースの合成画像生成パイプラインであるGAN画像合成ツール(GIST)を開発することである。
このパイプラインは、特定の患者に関連付けられていない高品質な合成画像データを生成することによって、デジタルヘルス空間におけるAIアルゴリズムの改善と標準化を支援する。
- 参考スコア(独自算出の注目度): 34.98319691651471
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In medical imaging, access to data is commonly limited due to patient privacy restrictions and the issue that it can be difficult to acquire enough data in the case of rare diseases.[1] The purpose of this investigation was to develop a reusable open-source synthetic image generation pipeline, the GAN Image Synthesis Tool (GIST), that is easy to use as well as easy to deploy. The pipeline helps to improve and standardize AI algorithms in the digital health space by generating high quality synthetic image data that is not linked to specific patients. Its image generation capabilities include the ability to generate imaging of pathologies or injuries with low incidence rates. This improvement of digital health AI algorithms could improve diagnostic accuracy, aid in patient care, decrease medicolegal claims, and ultimately decrease the overall cost of healthcare. The pipeline builds on existing Generative Adversarial Networks (GANs) algorithms, and preprocessing and evaluation steps were included for completeness. For this work, we focused on ensuring the pipeline supports radiography, with a focus on synthetic knee and elbow x-ray images. In designing the pipeline, we evaluated the performance of current GAN architectures, studying the performance on available x-ray data. We show that the pipeline is capable of generating high quality and clinically relevant images based on a lay person's evaluation and the Fr\'echet Inception Distance (FID) metric.
- Abstract(参考訳): 医用画像では、患者のプライバシの制限や、まれな疾患の場合の十分なデータ取得が困難である問題により、データへのアクセスが制限されることが一般的である。
本研究の目的は、再利用可能なオープンソースの合成画像生成パイプラインであるGAN画像合成ツール(GIST)を開発することである。
このパイプラインは、特定の患者に関連付けられていない高品質な合成画像データを生成することによって、デジタルヘルス空間におけるAIアルゴリズムの改善と標準化を支援する。
画像生成機能には、低頻度で病気や怪我の画像を生成する機能が含まれる。
このデジタルヘルスAIアルゴリズムの改善は、診断精度の向上、患者のケア支援、医薬品請求の低減、そして最終的に医療全体のコスト削減につながる。
パイプラインは既存のGAN(Generative Adversarial Networks)アルゴリズムに基づいて構築されており、完全性のために前処理と評価のステップが含まれていた。
本研究は,人工膝と肘X線画像に焦点をあてて,パイプラインがX線撮影をサポートすることに焦点を当てた。
パイプラインの設計において、我々は現在のGANアーキテクチャの性能を評価し、利用可能なX線データの性能について検討した。
本研究では,Fr'echet Inception Distance(FID)測定値に基づいて,高品質で臨床的に関係のある画像を生成することができることを示す。
関連論文リスト
- Applying Conditional Generative Adversarial Networks for Imaging Diagnosis [3.881664394416534]
本研究は、スタックド・ホアーグラス・ネットワーク(SHGN)と統合されたコンディショナル・ジェネレーション・アドバイザリアル・ネットワーク(C-GAN)の革新的な応用を紹介する。
我々は、複雑な画像データセットに適用されるディープラーニングモデルに共通するオーバーフィッティングの問題に、回転とスケーリングを通じてデータを増大させることで対処する。
血管内超音波(IVUS)画像において,L1とL2再構成損失を併用したハイブリッド損失関数を導入する。
論文 参考訳(メタデータ) (2024-07-17T23:23:09Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - Non-Imaging Medical Data Synthesis for Trustworthy AI: A Comprehensive
Survey [6.277848092408045]
データ品質は、医療において信頼できるAIを開発する上で重要な要素である。
高品質なデータセットへのアクセスは、データ取得の技術的困難によって制限される。
医療データの大規模な共有は、厳格な倫理的制約によって妨げられている。
論文 参考訳(メタデータ) (2022-09-17T13:34:17Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
受信した超音波エコーを空間画像領域にマッピングするビームフォーミングは、超音波画像形成チェーンの心臓に位置する。
現代の超音波イメージングは、強力なデジタル受信チャネル処理の革新に大きく依存している。
ディープラーニング手法は、デジタルビームフォーミングパイプラインにおいて魅力的な役割を果たす。
論文 参考訳(メタデータ) (2021-09-23T15:15:21Z) - Pathology-Aware Generative Adversarial Networks for Medical Image
Augmentation [0.22843885788439805]
GAN(Generative Adversarial Networks)は、現実的だが斬新なサンプルを生成し、実際の画像分布を効果的にカバーする。
この論文は、医師とのコラボレーションにおいて、そのような新しい応用の臨床的意義を提示することを目的とした4つのGANプロジェクトを含んでいる。
論文 参考訳(メタデータ) (2021-06-03T15:08:14Z) - Evaluating the Clinical Realism of Synthetic Chest X-Rays Generated
Using Progressively Growing GANs [0.0]
胸部X線は多くの患者のワークアップに欠かせない道具である。
新たな診断ツールを開発するためには,ラベル付きデータの量を増やす必要がある。
これまでの研究は、イメージを合成してトレーニングデータを増強するクラス固有のGANを作成することで、これらの問題に対処しようとしてきた。
論文 参考訳(メタデータ) (2020-10-07T11:47:22Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
新型コロナウイルス感染症(COVID-19)のパンデミックは世界中に広がっている。
X線やCT(Computerd Tomography)などの医用画像は、世界的な新型コロナウイルス対策に欠かせない役割を担っている。
最近登場した人工知能(AI)技術は、画像ツールの力を強化し、医療専門家を支援する。
論文 参考訳(メタデータ) (2020-04-06T15:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。