論文の概要: Non-Imaging Medical Data Synthesis for Trustworthy AI: A Comprehensive
Survey
- arxiv url: http://arxiv.org/abs/2209.09239v1
- Date: Sat, 17 Sep 2022 13:34:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-21 17:25:23.597118
- Title: Non-Imaging Medical Data Synthesis for Trustworthy AI: A Comprehensive
Survey
- Title(参考訳): 信頼できるAIのための非イメージング医療データ合成:包括的調査
- Authors: Xiaodan Xing, Huanjun Wu, Lichao Wang, Iain Stenson, May Yong, Javier
Del Ser, Simon Walsh, Guang Yang
- Abstract要約: データ品質は、医療において信頼できるAIを開発する上で重要な要素である。
高品質なデータセットへのアクセスは、データ取得の技術的困難によって制限される。
医療データの大規模な共有は、厳格な倫理的制約によって妨げられている。
- 参考スコア(独自算出の注目度): 6.277848092408045
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Data quality is the key factor for the development of trustworthy AI in
healthcare. A large volume of curated datasets with controlled confounding
factors can help improve the accuracy, robustness and privacy of downstream AI
algorithms. However, access to good quality datasets is limited by the
technical difficulty of data acquisition and large-scale sharing of healthcare
data is hindered by strict ethical restrictions. Data synthesis algorithms,
which generate data with a similar distribution as real clinical data, can
serve as a potential solution to address the scarcity of good quality data
during the development of trustworthy AI. However, state-of-the-art data
synthesis algorithms, especially deep learning algorithms, focus more on
imaging data while neglecting the synthesis of non-imaging healthcare data,
including clinical measurements, medical signals and waveforms, and electronic
healthcare records (EHRs). Thus, in this paper, we will review the synthesis
algorithms, particularly for non-imaging medical data, with the aim of
providing trustworthy AI in this domain. This tutorial-styled review paper will
provide comprehensive descriptions of non-imaging medical data synthesis on
aspects including algorithms, evaluations, limitations and future research
directions.
- Abstract(参考訳): データ品質は、医療において信頼できるAIを開発する上で重要な要素である。
制御されたコンバウンディングファクタを持つ大量のキュレートデータセットは、下流AIアルゴリズムの正確性、堅牢性、プライバシの向上に役立つ。
しかし、データ取得の技術的困難により高品質なデータセットへのアクセスが制限され、医療データの大規模共有は厳格な倫理的制約によって妨げられる。
実際の臨床データと同様の分布を持つデータを生成するデータ合成アルゴリズムは、信頼できるaiの開発中に良質なデータの不足に対処する潜在的な解決策となり得る。
しかし、最先端のデータ合成アルゴリズム、特にディープラーニングアルゴリズムは、臨床計測、医療信号と波形、電子医療記録(EHRs)を含む非イメージング医療データの合成を無視しながら、画像データに焦点を当てている。
そこで本稿では,この領域における信頼性の高いaiの提供を目的とした合成アルゴリズム,特に非イメージング医療データについて検討する。
本論文は, アルゴリズム, 評価, 限界, 今後の研究方向などについて, 非画像医用データ合成の包括的記述を提供する。
関連論文リスト
- NFDI4Health workflow and service for synthetic data generation, assessment and risk management [0.0]
この課題に対する有望な解決策は、合成データ生成である。
この手法は、実際のデータの統計特性を模倣する全く新しいデータセットを作成する。
本稿では,ドイツのNFDI4Healthプロジェクト(NFDI4Health)の文脈で開発されたワークフローとサービスについて述べる。
論文 参考訳(メタデータ) (2024-08-08T14:08:39Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
生成AIは、学術分野と産業分野の両方から多くの注目を集めている。
セキュアでプライバシ保護のモバイルクラウドセンシング(SPPMCS)は、データ収集/取得に広く応用されている。
論文 参考訳(メタデータ) (2024-05-17T04:00:58Z) - Synthetic Data in Radiological Imaging: Current State and Future Outlook [3.047958668050099]
放射線学における人工知能(AI)ソリューションの開発と展開の鍵となる課題は、関連するデータ制限を解決することである。
サイリコデータでは、患者の損害の低減、コストの削減、データ取得の簡略化、スケーラビリティ、品質保証テストの改善、データ不均衡に対する緩和アプローチなど、患者のデータに潜在的なメリットがいくつか提供されている。
論文 参考訳(メタデータ) (2024-05-08T18:35:47Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - Synthetic Medical Imaging Generation with Generative Adversarial Networks For Plain Radiographs [34.98319691651471]
本研究の目的は、再利用可能なオープンソースの合成画像生成パイプラインであるGAN画像合成ツール(GIST)を開発することである。
このパイプラインは、特定の患者に関連付けられていない高品質な合成画像データを生成することによって、デジタルヘルス空間におけるAIアルゴリズムの改善と標準化を支援する。
論文 参考訳(メタデータ) (2024-03-28T02:51:33Z) - On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms [56.119374302685934]
AI技術の信頼性に関する深刻な懸念があった。
機械学習とディープラーニングのアルゴリズムは、開発に使用されるデータに大きく依存する。
本稿では,責任あるルーブリックを用いてデータセットを評価するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-24T14:01:53Z) - Balancing Privacy and Progress in Artificial Intelligence: Anonymization
in Histopathology for Biomedical Research and Education [1.8078387709049526]
医療データを“可能な限りオープン”に転送することは、患者のプライバシにリスクをもたらす。
既存の規制は、再識別リスクを避けるため、医療データを「必要に応じてクローズド」し続けるよう推進している。
本稿では,医療データ共有に関する法的規制と用語について考察する。
論文 参考訳(メタデータ) (2023-07-18T16:53:07Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
新型コロナウイルスの感染拡大で医療資源が不足している。
新型コロナウイルスの診断を緩和するために、さまざまなデータ駆動型ディープラーニングモデルが開発されている。
患者のプライバシー上の懸念から、データそのものはまだ乏しい。
我々は、textbfPartial Networks (FLOP) を用いた、シンプルで効果的な textbfFederated textbfL textbfon Medical データセットを提案する。
論文 参考訳(メタデータ) (2021-02-10T01:56:58Z) - Overcoming Barriers to Data Sharing with Medical Image Generation: A
Comprehensive Evaluation [17.983449515155414]
我々は、GAN(Generative Adversarial Networks)を用いて、合成患者データからなる医用画像データセットを作成する。
合成画像は、理想的には、ソースデータセットと類似した統計特性を持つが、機密性の高い個人情報は含まない。
合成画像の品質は、合成データセットと実データセットの両方で訓練された予測モデルの性能差によって測定する。
論文 参考訳(メタデータ) (2020-11-29T15:41:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。