Mining Bug Repositories for Multi-Fault Programs
- URL: http://arxiv.org/abs/2403.19171v2
- Date: Wed, 10 Apr 2024 14:20:14 GMT
- Title: Mining Bug Repositories for Multi-Fault Programs
- Authors: Dylan Callaghan, Bernd Fischer,
- Abstract summary: We describe an extension to datasets in which multiple bugs are identified in individual entries.
We use test case transplantation and fault location translation, in order to expose and locate the bugs.
We thus provide datasets of true multi-fault versions within real-world software projects.
- Score: 0.25782420501870285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Datasets such as Defects4J and BugsInPy that contain bugs from real-world software projects are necessary for a realistic evaluation of automated debugging tools. However these datasets largely identify only a single bug in each entry, while real-world software projects (including those used in Defects4J and BugsInPy) typically contain multiple bugs at the same time. We lift this limitation and describe an extension to these datasets in which multiple bugs are identified in individual entries. We use test case transplantation and fault location translation, in order to expose and locate the bugs, respectively. We thus provide datasets of true multi-fault versions within real-world software projects, which maintain the properties and usability of the original datasets.
Related papers
- GitBugs: Bug Reports for Duplicate Detection, Retrieval Augmented Generation, Triage, and More [0.0]
We present GitBugs, a comprehen-sive and up-to-date dataset of over 150,000 bug reports from nine actively maintained open-source projects.
GitBugs aggregates data from Github, Bugzilla and Jira issue trackers, offering standardized categorical fields for classification tasks.
It includes ex- ploratory analysis notebooks and detailed project-level statistics, such as duplicate rates and resolution times.
arXiv Detail & Related papers (2025-04-13T16:55:28Z) - Developers' Perception: Fixed Bugs Often Overlooked as Quality Contributions [0.0]
Only a third of programmers perceive the quantity of bugs found and rectified in a repository as indicative of higher quality.
This finding substantiates the notion that programmers often misinterpret the significance of testing and bug reporting.
arXiv Detail & Related papers (2024-03-16T04:40:19Z) - DebugBench: Evaluating Debugging Capability of Large Language Models [80.73121177868357]
DebugBench is a benchmark for Large Language Models (LLMs)
It covers four major bug categories and 18 minor types in C++, Java, and Python.
We evaluate two commercial and four open-source models in a zero-shot scenario.
arXiv Detail & Related papers (2024-01-09T15:46:38Z) - Automated Bug Generation in the era of Large Language Models [6.0770779409377775]
BugFarm transforms arbitrary code into multiple complex bugs.
A comprehensive evaluation of 435k+ bugs from over 1.9M mutants generated by BUGFARM.
arXiv Detail & Related papers (2023-10-03T20:01:51Z) - PreciseBugCollector: Extensible, Executable and Precise Bug-fix
Collection [8.79879909193717]
We introduce PreciseBugCollector, a precise, multi-language bug collection approach.
It is based on two novel components: a bug tracker to map the repositories with external bug repositories to trace bug type information, and a bug injector to generate project-specific bugs.
To date, PreciseBugCollector comprises 1057818 bugs extracted from 2968 open-source projects.
arXiv Detail & Related papers (2023-09-12T13:47:44Z) - RAP-Gen: Retrieval-Augmented Patch Generation with CodeT5 for Automatic
Program Repair [75.40584530380589]
We propose a novel Retrieval-Augmented Patch Generation framework (RAP-Gen)
RAP-Gen explicitly leveraging relevant fix patterns retrieved from a list of previous bug-fix pairs.
We evaluate RAP-Gen on three benchmarks in two programming languages, including the TFix benchmark in JavaScript, and Code Refinement and Defects4J benchmarks in Java.
arXiv Detail & Related papers (2023-09-12T08:52:56Z) - WELL: Applying Bug Detectors to Bug Localization via Weakly Supervised
Learning [37.09621161662761]
This paper proposes a WEakly supervised bug LocaLization (WELL) method to train a bug localization model.
With CodeBERT finetuned on the buggy-or-not binary labeled data, WELL can address bug localization in a weakly supervised manner.
arXiv Detail & Related papers (2023-05-27T06:34:26Z) - Too Few Bug Reports? Exploring Data Augmentation for Improved
Changeset-based Bug Localization [7.884766610628946]
We propose novel data augmentation operators that act on different constituent components of bug reports.
We also describe a data balancing strategy that aims to create a corpus of augmented bug reports.
arXiv Detail & Related papers (2023-05-25T19:06:01Z) - Using Developer Discussions to Guide Fixing Bugs in Software [51.00904399653609]
We propose using bug report discussions, which are available before the task is performed and are also naturally occurring, avoiding the need for additional information from developers.
We demonstrate that various forms of natural language context derived from such discussions can aid bug-fixing, even leading to improved performance over using commit messages corresponding to the oracle bug-fixing commits.
arXiv Detail & Related papers (2022-11-11T16:37:33Z) - BigIssue: A Realistic Bug Localization Benchmark [89.8240118116093]
BigIssue is a benchmark for realistic bug localization.
We provide a general benchmark with a diversity of real and synthetic Java bugs.
We hope to advance the state of the art in bug localization, in turn improving APR performance and increasing its applicability to the modern development cycle.
arXiv Detail & Related papers (2022-07-21T20:17:53Z) - S3M: Siamese Stack (Trace) Similarity Measure [55.58269472099399]
We present S3M -- the first approach to computing stack trace similarity based on deep learning.
It is based on a biLSTM encoder and a fully-connected classifier to compute similarity.
Our experiments demonstrate the superiority of our approach over the state-of-the-art on both open-sourced data and a private JetBrains dataset.
arXiv Detail & Related papers (2021-03-18T21:10:41Z) - D2A: A Dataset Built for AI-Based Vulnerability Detection Methods Using
Differential Analysis [55.15995704119158]
We propose D2A, a differential analysis based approach to label issues reported by static analysis tools.
We use D2A to generate a large labeled dataset to train models for vulnerability identification.
arXiv Detail & Related papers (2021-02-16T07:46:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.