論文の概要: Make Large Language Model a Better Ranker
- arxiv url: http://arxiv.org/abs/2403.19181v1
- Date: Thu, 28 Mar 2024 07:22:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 17:03:08.557544
- Title: Make Large Language Model a Better Ranker
- Title(参考訳): 大きな言語モデルをより良いランク付けに
- Authors: Wenshuo Chao, Zhi Zheng, Hengshu Zhu, Hao Liu,
- Abstract要約: 本稿では,aligned Listwise Ranking Objectives (ALRO)を用いた言語モデルフレームワークを提案する。
ALROの重要な特徴は、言語生成タスクに適した損失適応である、ソフトロスの導入である。
評価研究により,ALROが既存の埋め込み型レコメンデーション法より優れていることが明らかとなった。
- 参考スコア(独自算出の注目度): 20.532118635672763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The evolution of Large Language Models (LLMs) has significantly enhanced capabilities across various fields, leading to a paradigm shift in how Recommender Systems (RSs) are conceptualized and developed. However, existing research primarily focuses on point-wise and pair-wise recommendation paradigms. These approaches prove inefficient in LLM-based recommenders due to the high computational cost of utilizing Large Language Models. While some studies have delved into list-wise approaches, they fall short in ranking tasks. This shortfall is attributed to the misalignment between the objectives of ranking and language generation. To this end, this paper introduces the Language Model Framework with Aligned Listwise Ranking Objectives (ALRO). ALRO is designed to bridge the gap between the capabilities of LLMs and the nuanced requirements of ranking tasks within recommender systems. A key feature of ALRO is the introduction of soft lambda loss, an adaptation of lambda loss tailored to suit language generation tasks. Additionally, ALRO incorporates a permutation-sensitive learning mechanism that addresses position bias, a prevalent issue in generative models, without imposing additional computational burdens during inference. Our evaluative studies reveal that ALRO outperforms existing embedding-based recommendation methods and the existing LLM-based recommendation baselines, highlighting its efficacy.
- Abstract(参考訳): LLM(Large Language Models)の進化は、様々な分野にわたって大幅に拡張され、Recommender Systems(RS)の概念化と発展のパラダイムシフトにつながった。
しかし、既存の研究は主にポイントワイドとペアワイドのレコメンデーションパラダイムに焦点を当てている。
これらのアプローチは、大規模言語モデルを利用する計算コストが高いため、LLMベースのレコメンデータでは非効率であることが証明されている。
リストワイドなアプローチを探求する研究もあるが、ランキングタスクでは不足している。
この欠点は、ランク付けの目的と言語生成の相違によるものである。
そこで本稿では,Aligned Listwise Ranking Objectives (ALRO) を用いた言語モデルフレームワークを提案する。
ALROは、LLMの能力とレコメンダシステム内のランキングタスクの微妙な要求とのギャップを埋めるように設計されている。
ALROの重要な特徴は、言語生成タスクに適したラムダ損失の適応である、ソフトラムダ損失の導入である。
さらに、ALROには、位置バイアスに対処する置換感受性学習機構が組み込まれている。
評価研究により,ALROは既存の組込み型レコメンデーション法と既存のLCMベースのレコメンデーションベースラインを上回り,その有効性を強調した。
関連論文リスト
- Ranking Unraveled: Recipes for LLM Rankings in Head-to-Head AI Combat [7.8905223445925055]
大規模言語モデル(LLM)に対する人間の嗜好を評価する新しい方法として、ペアワイズランキングが登場した。
LLMの前後比較におけるランキングシステムの有効性について検討する。
我々の分析は、ランキングの精度と効率に影響を与える要因について重要な洞察を見出している。
論文 参考訳(メタデータ) (2024-11-19T20:16:26Z) - Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
大規模言語モデル (LLM) はシーケンシャル・ツー・シーケンス・アプローチによってタスクのランク付けに使用されている。
この階調のパラダイムは、より大きな候補集合を反復的に扱うためにスライディングウインドウ戦略を必要とする。
そこで本稿では,LLMを用いた自己校正リストのランク付け手法を提案する。
論文 参考訳(メタデータ) (2024-11-07T10:31:31Z) - Enhancing High-order Interaction Awareness in LLM-based Recommender Model [3.7623606729515133]
本稿では,LLMベースのリコメンデータ(ELMRec)について述べる。
我々は、レコメンデーションのためのグラフ構築相互作用のLLM解釈を大幅に強化するために、単語全体の埋め込みを強化する。
ELMRecは、直接およびシーケンシャルなレコメンデーションの両方において、最先端(SOTA)メソッドよりも優れています。
論文 参考訳(メタデータ) (2024-09-30T06:07:12Z) - Large Language Model Empowered Embedding Generator for Sequential Recommendation [57.49045064294086]
大言語モデル(LLM)は、その人気に関係なく、項目間の意味的関係を理解する能力を持つ。
LLMEmbは、LCMを利用してアイテム埋め込みを作成し、シークエンシャル・レコメンダ・システムの性能を高める革新的な技術である。
論文 参考訳(メタデータ) (2024-09-30T03:59:06Z) - Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
逐次リコメンデータシステム(SRS)は,ユーザの過去のインタラクションシーケンスに基づいて,ユーザが好む次の項目を予測する。
様々なAIアプリケーションにおける大規模言語モデル(LLM)の台頭に触発されて、LLMベースのSRSの研究が急増している。
我々は,大きめの粒度適応の上に構築された逐次レコメンデーションモデルであるDARecを提案する。
論文 参考訳(メタデータ) (2024-08-14T10:03:40Z) - FIRST: Faster Improved Listwise Reranking with Single Token Decoding [56.727761901751194]
まず、第1生成識別子の出力ロジットを活用して、候補のランク付け順序を直接取得する新しいリストワイズLLMリグレードアプローチであるFIRSTを紹介する。
実験結果から、BEIRベンチマークの利得により、FIRSTはロバストなランキング性能を維持しつつ、推論を50%高速化することが示された。
以上の結果から,LLMリランカーはクロスエンコーダに比べて強い蒸留信号を提供できることが示唆された。
論文 参考訳(メタデータ) (2024-06-21T21:27:50Z) - Fairer Preferences Elicit Improved Human-Aligned Large Language Model Judgments [41.25558612970942]
大規模言語モデル (LLMs) が優先バイアスを示し, 設計に敏感であることを示す。
この現象に触発された自動ゼロショット評価指向のプロンプト最適化フレームワークZEPOを提案する。
論文 参考訳(メタデータ) (2024-06-17T09:48:53Z) - LiPO: Listwise Preference Optimization through Learning-to-Rank [62.02782819559389]
ポリシーは、プロンプトによってランク付けされた妥当な応答のリストからより効果的に学習することができる。
LiPO-$lambda$ は DPO 変種と SLiC をいくつかの選好アライメントタスクにおいて明確なマージンで上回ることを示す。
論文 参考訳(メタデータ) (2024-02-02T20:08:10Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
推奨領域におけるLarge Language Models (LLMs) の適用について, 十分に検討されていない。
我々は、評価予測、シーケンシャルレコメンデーション、直接レコメンデーション、説明生成、レビュー要約を含む5つのレコメンデーションタスクにおいて、市販のLLMをベンチマークする。
ベンチマークの結果,LLMは逐次的・直接的推薦といった精度に基づくタスクにおいて適度な熟練度しか示さないことがわかった。
論文 参考訳(メタデータ) (2023-08-23T16:32:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。