論文の概要: MPXGAT: An Attention based Deep Learning Model for Multiplex Graphs Embedding
- arxiv url: http://arxiv.org/abs/2403.19246v1
- Date: Thu, 28 Mar 2024 09:06:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 16:53:18.903517
- Title: MPXGAT: An Attention based Deep Learning Model for Multiplex Graphs Embedding
- Title(参考訳): MPXGAT:多重グラフ埋め込みのための注意に基づくディープラーニングモデル
- Authors: Marco Bongiovanni, Luca Gallo, Roberto Grasso, Alfredo Pulvirenti,
- Abstract要約: マルチプレックスグラフ埋め込みに適した,革新的注目に基づくディープラーニングモデルMPXGATを紹介する。
MPXGATは層内接続と層間接続の両方を利用して多重ネットワークの構造をキャプチャする。
様々なベンチマークデータセットを用いて実施した総合的な実験的評価により,MPXGATが最先端の競合アルゴリズムより一貫して優れていることを確認した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph representation learning has rapidly emerged as a pivotal field of study. Despite its growing popularity, the majority of research has been confined to embedding single-layer graphs, which fall short in representing complex systems with multifaceted relationships. To bridge this gap, we introduce MPXGAT, an innovative attention-based deep learning model tailored to multiplex graph embedding. Leveraging the robustness of Graph Attention Networks (GATs), MPXGAT captures the structure of multiplex networks by harnessing both intra-layer and inter-layer connections. This exploitation facilitates accurate link prediction within and across the network's multiple layers. Our comprehensive experimental evaluation, conducted on various benchmark datasets, confirms that MPXGAT consistently outperforms state-of-the-art competing algorithms.
- Abstract(参考訳): グラフ表現学習は、研究の重要分野として急速に発展してきた。
人気が高まっているにもかかわらず、研究の大半は単層グラフの埋め込みに限られており、多面関係を持つ複雑なシステムでは不足している。
このギャップを埋めるために、多重グラフ埋め込みに適した、革新的な注意に基づくディープラーニングモデルMPXGATを導入する。
グラフ注意ネットワーク(GAT)の堅牢性を活用して、MPXGATは層内接続と層間接続の両方を利用して多重ネットワークの構造をキャプチャする。
この利用により、ネットワークの複数の層内および横断する正確なリンク予測が容易になる。
様々なベンチマークデータセットを用いて実施した総合的な実験的評価により,MPXGATが最先端の競合アルゴリズムより一貫して優れていることを確認した。
関連論文リスト
- DualHGNN: A Dual Hypergraph Neural Network for Semi-Supervised Node
Classification based on Multi-View Learning and Density Awareness [3.698434507617248]
グラフに基づく半教師付きノード分類は、研究価値と重要性の高い多くのアプリケーションにおいて最先端のアプローチであることが示されている。
本稿では、ハイパーグラフ構造学習とハイパーグラフ表現学習を同時に統合した新しいデュアル接続モデルであるデュアルハイパーグラフニューラルネットワーク(DualHGNN)を提案する。
論文 参考訳(メタデータ) (2023-06-07T07:40:04Z) - Fisher Information Embedding for Node and Graph Learning [5.263910852465186]
本稿では,グラフのための新しい注目型ノード埋め込みフレームワークを提案する。
我々のフレームワークはノード周辺のサブグラフの多重集合のための階層的カーネル上に構築されている。
埋め込みの一般化性と表現性に関する理論的知見を提供する。
論文 参考訳(メタデータ) (2023-05-12T16:15:30Z) - Learnable Graph Convolutional Network and Feature Fusion for Multi-view
Learning [30.74535386745822]
本稿では,Learningable Graph Convolutional Network and Feature Fusion (LGCN-FF) と呼ばれる統合ディープラーニングフレームワークを提案する。
特徴融合ネットワークと学習可能なグラフ畳み込みネットワークの2つのステージで構成されている。
提案したLGCN-FFは,多視点半教師付き分類において,様々な最先端手法よりも優れていることが検証された。
論文 参考訳(メタデータ) (2022-11-16T19:07:12Z) - MultiSAGE: a multiplex embedding algorithm for inter-layer link
prediction [0.0]
MultiSAGEはGraphSAGEアルゴリズムの一般化であり、複数のネットワークを埋め込むことができる。
我々は、MultiSAGEが層内接続と層間接続の両方を再構築でき、GraphSAGEより優れていることを示す。
論文 参考訳(メタデータ) (2022-06-24T08:50:55Z) - MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs [55.66953093401889]
Masked Graph Autoencoder (MGAE) フレームワークは、グラフ構造データの効果的な学習を行う。
自己指導型学習から洞察を得て、私たちはランダムに大量のエッジを隠蔽し、トレーニング中に欠落したエッジを再構築しようとします。
論文 参考訳(メタデータ) (2022-01-07T16:48:07Z) - Residual Enhanced Multi-Hypergraph Neural Network [26.42547421121713]
HyperGraph Neural Network (HGNN) はハイパーグラフ表現学習のためのデファクト手法である。
本稿では,各ハイパーグラフからのマルチモーダル情報を効果的に融合できるResidual enhanced Multi-Hypergraph Neural Networkを提案する。
論文 参考訳(メタデータ) (2021-05-02T14:53:32Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
2つのコア成分を組み込んだ多次元グラフ学習モデルを提案します。
情報埋め込みグラフを生成するグラフ自己補正(GSC)機構、および入力グラフの包括的な特性評価を達成するために多様性ブースト正規化(DBR)。
一般的なグラフ分類ベンチマークの実験は、提案されたGSCメカニズムが最先端のグラフプーリング方法よりも大幅に改善されることを示しています。
論文 参考訳(メタデータ) (2021-03-17T16:22:24Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
グラフ組み込み数ショット学習に関する包括的な研究を紹介します。
本稿では,ラベル間のグラフ情報の組み込みによる影響をより深く理解できるグラフ正規化手法を提案する。
提案手法は,Mini-ImageNetで最大2%,ImageNet-FSで6.7%の性能向上を実現する。
論文 参考訳(メタデータ) (2021-02-14T05:28:13Z) - Graph Cross Networks with Vertex Infomax Pooling [69.38969610952927]
グラフの複数スケールから包括的特徴学習を実現するための新しいグラフクロスネットワーク(GXN)を提案する。
グラフのトレーニング可能な階層表現に基づいて、GXNは、スケール間で中間的特徴の交換を可能にし、情報フローを促進する。
論文 参考訳(メタデータ) (2020-10-05T06:34:23Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。