論文の概要: Tabular Learning: Encoding for Entity and Context Embeddings
- arxiv url: http://arxiv.org/abs/2403.19405v1
- Date: Thu, 28 Mar 2024 13:29:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 16:14:04.144179
- Title: Tabular Learning: Encoding for Entity and Context Embeddings
- Title(参考訳): Tabular Learning: エンティティとコンテキストの埋め込みをエンコードする
- Authors: Fredy Reusser,
- Abstract要約: 異なるエンコーディング手法がエンティティとコンテキストの埋め込みに与える影響を調べる。
複数のデータセットに異なる前処理方法とネットワークアーキテクチャを適用することで、エンコーダがネットワークの学習結果にどのように影響するかのベンチマークが得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Examining the effect of different encoding techniques on entity and context embeddings, the goal of this work is to challenge commonly used Ordinal encoding for tabular learning. Applying different preprocessing methods and network architectures over several datasets resulted in a benchmark on how the encoders influence the learning outcome of the networks. By keeping the test, validation and training data consistent, results have shown that ordinal encoding is not the most suited encoder for categorical data in terms of preprocessing the data and thereafter, classifying the target variable correctly. A better outcome was achieved, encoding the features based on string similarities by computing a similarity matrix as input for the network. This is the case for both, entity and context embeddings, where the transformer architecture showed improved performance for Ordinal and Similarity encoding with regard to multi-label classification tasks.
- Abstract(参考訳): 本研究の目的は,様々なエンコーディング技術がエンティティやコンテキストの埋め込みに与える影響を調べることにある。
複数のデータセットに異なる前処理方法とネットワークアーキテクチャを適用することで、エンコーダがネットワークの学習結果にどのように影響するかのベンチマークが得られた。
テスト,検証,トレーニングデータの一貫性を維持することで,データ前処理において順序エンコーディングが最も適したエンコーダではないことを示し,その後,対象変数を正しく分類する。
より優れた結果が得られ、ネットワークの入力として類似度行列を計算することにより、文字列の類似度に基づく特徴を符号化した。
これは、エンティティとコンテキストの埋め込みの両方のケースで、トランスフォーマーアーキテクチャは、マルチラベル分類タスクに関して、順序および類似性エンコーディングのパフォーマンスを改善した。
関連論文リスト
- On the Suitability of Representations for Quality Diversity Optimization
of Shapes [77.34726150561087]
進化的アルゴリズムで使用される表現、あるいは符号化は、その性能に大きな影響を及ぼす。
本研究では, 直接符号化, 辞書ベース表現, パラメトリック符号化, 合成パターン生成ネットワーク, セルオートマトンなどの表現が, 酸化メッシュの生成に与える影響について比較した。
論文 参考訳(メタデータ) (2023-04-07T07:34:23Z) - Effective and Interpretable Information Aggregation with Capacity
Networks [3.4012007729454807]
キャパシティネットワークは、意味論的意味のある空間に集約できる複数の解釈可能な中間結果を生成する。
この単純な帰納バイアスを実装することで、異なるエンコーダ・デコーダアーキテクチャの改善がもたらされることを示す。
論文 参考訳(メタデータ) (2022-07-25T09:45:16Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
コード検索のためのマルチモーダルコントラスト学習とソフトデータ拡張を用いた新しい手法を提案する。
我々は,6つのプログラミング言語を用いた大規模データセットにおけるアプローチの有効性を評価するために,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-04-07T08:49:27Z) - Graph-Based Decoding for Task Oriented Semantic Parsing [16.054030490095464]
セマンティック解析を依存性解析タスクとして定式化し、構文解析のために開発されたグラフベースの復号法を適用した。
グラフベースのアプローチは、標準設定のシーケンスデコーダと競合し、部分的に注釈付けされたデータが利用できるようなデータ効率と設定を大幅に改善できることが分かりました。
論文 参考訳(メタデータ) (2021-09-09T23:22:09Z) - Regularized target encoding outperforms traditional methods in
supervised machine learning with high cardinality features [1.1709030738577393]
分類変数の数値表現を導出する手法を検討する。
異なるエンコーディング戦略と5つの機械学習アルゴリズムを比較した。
ターゲットエンコーディングの正規化バージョンが一貫して最高の結果を提供した。
論文 参考訳(メタデータ) (2021-04-01T17:21:42Z) - Few-shot Sequence Learning with Transformers [79.87875859408955]
少数のトレーニング例で提供される新しいタスクの学習を目的とした少数のショットアルゴリズム。
本研究では,データポイントがトークンのシーケンスである設定において,少数ショット学習を行う。
トランスフォーマーに基づく効率的な学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-17T12:30:38Z) - Automated Concatenation of Embeddings for Structured Prediction [75.44925576268052]
本稿では, 埋め込みの自動結合(ACE)を提案し, 構造予測タスクにおける埋め込みのより優れた結合を見つけるプロセスを自動化する。
我々は、強化学習の戦略に従い、制御器のパラメータを最適化し、タスクモデルの精度に基づいて報酬を計算する。
論文 参考訳(メタデータ) (2020-10-10T14:03:20Z) - GraphCodeBERT: Pre-training Code Representations with Data Flow [97.00641522327699]
本稿では,コード固有の構造を考慮したプログラミング言語の事前学習モデルであるGraphCodeBERTを提案する。
これは変数間の"where-the-value-comes-from"の関係をエンコードするコードのセマンティックレベルの構造です。
コード検索,クローン検出,コード翻訳,コード改良の4つのタスクにおいて,本モデルを評価する。
論文 参考訳(メタデータ) (2020-09-17T15:25:56Z) - Auto-Encoding Twin-Bottleneck Hashing [141.5378966676885]
本稿では,効率よく適応的なコード駆動グラフを提案する。
自動エンコーダのコンテキストでデコードすることで更新される。
ベンチマークデータセットの実験は、最先端のハッシュ手法よりもフレームワークの方が優れていることを明らかに示しています。
論文 参考訳(メタデータ) (2020-02-27T05:58:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。