論文の概要: Physics-aware deep learning framework for the limited aperture inverse obstacle scattering problem
- arxiv url: http://arxiv.org/abs/2403.19470v2
- Date: Sun, 03 Nov 2024 14:42:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 21:25:43.991111
- Title: Physics-aware deep learning framework for the limited aperture inverse obstacle scattering problem
- Title(参考訳): 有限開口逆障害物散乱問題に対する物理認識深層学習フレームワーク
- Authors: Yunwen Yin, Liang Yan,
- Abstract要約: 本稿では,限られた開口逆障害物散乱問題に対する深層学習手法について考察する。
これは、ニューラルネットワークアーキテクチャに散乱モデルに関連する物理演算子を提供することによって達成される。
また,入力された限られた開口データに小さな雑音を加えることで,新たな正規化項を導入し,学習した逆演算子の滑らかさを効果的に向上できることを示す。
- 参考スコア(独自算出の注目度): 0.8954787120738879
- License:
- Abstract: In this paper, we consider a deep learning approach to the limited aperture inverse obstacle scattering problem. It is well known that traditional deep learning relies solely on data, which may limit its performance for the inverse problem when only indirect observation data and a physical model are available. A fundamental question arises in light of these limitations: is it possible to enable deep learning to work on inverse problems without labeled data and to be aware of what it is learning? This work proposes a deep decomposition method (DDM) for such purposes, which does not require ground truth labels. It accomplishes this by providing physical operators associated with the scattering model to the neural network architecture. Additionally, a deep learning based data completion scheme is implemented in DDM to prevent distorting the solution of the inverse problem for limited aperture data. Furthermore, apart from addressing the ill-posedness imposed by the inverse problem itself, DDM is the first physics-aware machine learning technique that can have interpretability property for the obstacle detection. The convergence result of DDM is theoretically investigated. We also prove that adding small noise to the input limited aperture data can introduce additional regularization terms and effectively improve the smoothness of the learned inverse operator. Numerical experiments are presented to demonstrate the validity of the proposed DDM even when the incident and observation apertures are extremely limited.
- Abstract(参考訳): 本稿では,限られた開口逆障害物散乱問題に対する深層学習手法について考察する。
従来のディープラーニングはデータのみに依存しており、間接観測データと物理モデルしか利用できない場合、逆問題の性能を制限する可能性があることはよく知られている。
ディープ・ラーニングがラベル付けされたデータなしで逆問題に取り組み、何が学習されているかを認識することは可能か?
本研究は, 基礎となる真理ラベルを必要としない深層分解法(DDM)を提案する。
これは、ニューラルネットワークアーキテクチャに散乱モデルに関連する物理演算子を提供することによって達成される。
また、DDMに深層学習に基づくデータ補完方式を実装し、限られた開口データに対する逆問題解の歪曲を防止する。
さらに、逆問題自体が課す不備に対処することとは別に、DDMは障害検出のための解釈可能性を持つ最初の物理認識機械学習技術である。
DDMの収束結果を理論的に検討した。
また,入力された限られた開口データに小さな雑音を加えることで,新たな正規化項を導入し,学習した逆演算子の滑らかさを効果的に向上できることを示す。
数値実験により,入射開口と観測開口が極端に制限された場合でも,提案したDDMの有効性を示す。
関連論文リスト
- Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection [1.0358639819750703]
教師なし異常検出(UAD)研究では、計算効率が高くスケーラブルなソリューションを開発する必要がある。
再建・塗り替えのアプローチを再考し、強みと弱みを分析して改善する。
異常再構成の特徴情報を減衰させる2つの層のみを用いるFADeR(Feature Attenuation of Defective Representation)を提案する。
論文 参考訳(メタデータ) (2024-07-05T15:44:53Z) - DPMesh: Exploiting Diffusion Prior for Occluded Human Mesh Recovery [71.6345505427213]
DPMeshは、人間のメッシュリカバリを排除した革新的なフレームワークである。
これは、事前訓練されたテキスト・ツー・イメージ拡散モデルに埋め込まれた対象構造と空間的関係について、より深い拡散に乗じる。
論文 参考訳(メタデータ) (2024-04-01T18:59:13Z) - Physics-Informed Deep Learning of Rate-and-State Fault Friction [0.0]
我々は, 前方問題と非線形欠陥摩擦パラメータの直接逆変換のためのマルチネットワークPINNを開発した。
本稿では1次元および2次元のストライク・スリップ断層に対する速度・状態摩擦を考慮した計算PINNフレームワークを提案する。
その結果, 断層におけるパラメータ逆転のネットワークは, 結合した物質変位のネットワークよりもはるかに優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-14T23:53:25Z) - Efficient Deep Reinforcement Learning Requires Regulating Overfitting [91.88004732618381]
本稿では,高時間差(TD)誤差が深部RLアルゴリズムの性能に悪影響を及ぼす主要な原因であることを示す。
検証TDエラーをターゲットとした簡単なオンラインモデル選択法は,状態ベースDMCおよびGymタスク間で有効であることを示す。
論文 参考訳(メタデータ) (2023-04-20T17:11:05Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - Causal Deep Reinforcement Learning Using Observational Data [11.790171301328158]
深部強化学習(DRL)における2つの解答法を提案する。
提案手法はまず, 因果推論法に基づいて異なる試料の重要度を算出し, 損失関数に対する異なる試料の影響を調整する。
本手法の有効性を実証し,実験的に検証する。
論文 参考訳(メタデータ) (2022-11-28T14:34:39Z) - Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning [3.441021278275805]
本稿では,反復的なエンドツーエンドネットワーク方式により,数値的精度に近い再構成が可能となることを示す。
また、オープンアクセスの実世界のデータセットLoDoPaB CT上で、最先端のパフォーマンスを実証する。
論文 参考訳(メタデータ) (2022-06-14T10:06:41Z) - MissDAG: Causal Discovery in the Presence of Missing Data with
Continuous Additive Noise Models [78.72682320019737]
不完全な観測データから因果発見を行うため,MissDAGと呼ばれる一般的な手法を開発した。
MissDAGは、期待-最大化の枠組みの下で観測の可視部分の期待される可能性を最大化する。
各種因果探索アルゴリズムを組み込んだMissDAGの柔軟性について,広範囲なシミュレーションと実データ実験により検証した。
論文 参考訳(メタデータ) (2022-05-27T09:59:46Z) - Occlusion-aware Unsupervised Learning of Depth from 4-D Light Fields [50.435129905215284]
4次元光場処理と解析のための教師なし学習に基づく深度推定法を提案する。
光場データの特異な幾何学構造に関する基礎知識に基づいて,光場ビューのサブセット間の角度コヒーレンスを探索し,深度マップを推定する。
提案手法は,従来の手法と同等の精度で計算コストを低減した深度マップを作成できる。
論文 参考訳(メタデータ) (2021-06-06T06:19:50Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - A new interpretable unsupervised anomaly detection method based on
residual explanation [47.187609203210705]
本稿では,大規模システムにおけるAEベースのADの制限に対処する新しい解釈可能性手法であるRXPを提案する。
実装の単純さ、計算コストの低さ、決定論的振る舞いが特徴である。
実鉄道路線のデータを用いた実験において,提案手法はSHAPよりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-03-14T15:35:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。