Benchmarking Implicit Neural Representation and Geometric Rendering in Real-Time RGB-D SLAM
- URL: http://arxiv.org/abs/2403.19473v1
- Date: Thu, 28 Mar 2024 14:59:56 GMT
- Title: Benchmarking Implicit Neural Representation and Geometric Rendering in Real-Time RGB-D SLAM
- Authors: Tongyan Hua, Lin Wang,
- Abstract summary: Implicit neural representation (INR) in combination with geometric rendering has been employed in real-time dense RGB-D SLAM.
We establish the first open-source benchmark framework to evaluate the performance of a wide spectrum of commonly used INRs and rendering functions.
We propose explicit hybrid encoding for high-fidelity dense grid mapping to comply with the RGB-D SLAM system.
- Score: 6.242958695705305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit neural representation (INR), in combination with geometric rendering, has recently been employed in real-time dense RGB-D SLAM. Despite active research endeavors being made, there lacks a unified protocol for fair evaluation, impeding the evolution of this area. In this work, we establish, to our knowledge, the first open-source benchmark framework to evaluate the performance of a wide spectrum of commonly used INRs and rendering functions for mapping and localization. The goal of our benchmark is to 1) gain an intuition of how different INRs and rendering functions impact mapping and localization and 2) establish a unified evaluation protocol w.r.t. the design choices that may impact the mapping and localization. With the framework, we conduct a large suite of experiments, offering various insights in choosing the INRs and geometric rendering functions: for example, the dense feature grid outperforms other INRs (e.g. tri-plane and hash grid), even when geometric and color features are jointly encoded for memory efficiency. To extend the findings into the practical scenario, a hybrid encoding strategy is proposed to bring the best of the accuracy and completion from the grid-based and decomposition-based INRs. We further propose explicit hybrid encoding for high-fidelity dense grid mapping to comply with the RGB-D SLAM system that puts the premise on robustness and computation efficiency.
Related papers
- Splat-SLAM: Globally Optimized RGB-only SLAM with 3D Gaussians [87.48403838439391]
3D Splatting has emerged as a powerful representation of geometry and appearance for RGB-only dense Simultaneous SLAM.
We propose the first RGB-only SLAM system with a dense 3D Gaussian map representation.
Our experiments on the Replica, TUM-RGBD, and ScanNet datasets indicate the effectiveness of globally optimized 3D Gaussians.
arXiv Detail & Related papers (2024-05-26T12:26:54Z) - GlORIE-SLAM: Globally Optimized RGB-only Implicit Encoding Point Cloud SLAM [53.6402869027093]
We propose an efficient RGB-only dense SLAM system using a flexible neural point cloud representation scene.
We also introduce a novel DSPO layer for bundle adjustment which optimize the pose and depth of implicits along with the scale of the monocular depth.
arXiv Detail & Related papers (2024-03-28T16:32:06Z) - RGBD GS-ICP SLAM [1.3108652488669732]
We propose a novel dense representation SLAM approach with a fusion of Generalized Iterative Closest Point (G-ICP) and 3D Gaussian Splatting (3DGS)
Experimental results demonstrate the effectiveness of our approach, showing an incredibly fast speed up to 107 FPS.
arXiv Detail & Related papers (2024-03-19T08:49:48Z) - Sim-to-Real Grasp Detection with Global-to-Local RGB-D Adaptation [19.384129689848294]
This paper focuses on the sim-to-real issue of RGB-D grasp detection and formulates it as a domain adaptation problem.
We present a global-to-local method to address hybrid domain gaps in RGB and depth data and insufficient multi-modal feature alignment.
arXiv Detail & Related papers (2024-03-18T06:42:38Z) - Leveraging Neural Radiance Field in Descriptor Synthesis for Keypoints Scene Coordinate Regression [1.2974519529978974]
This paper introduces a pipeline for keypoint descriptor synthesis using Neural Radiance Field (NeRF)
generating novel poses and feeding them into a trained NeRF model to create new views, our approach enhances the KSCR's capabilities in data-scarce environments.
The proposed system could significantly improve localization accuracy by up to 50% and cost only a fraction of time for data synthesis.
arXiv Detail & Related papers (2024-03-15T13:40:37Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAM is a novel neural RGB-D semantic SLAM approach featuring a hybrid representation.
Our method integrates multi-view geometry constraints with image-based feature extraction to improve appearance details.
Our experimental results achieve state-of-the-art performance on both synthetic data and real-world data tracking.
arXiv Detail & Related papers (2023-11-30T21:34:44Z) - CP-SLAM: Collaborative Neural Point-based SLAM System [54.916578456416204]
This paper presents a collaborative implicit neural localization and mapping (SLAM) system with RGB-D image sequences.
In order to enable all these modules in a unified framework, we propose a novel neural point based 3D scene representation.
A distributed-to-centralized learning strategy is proposed for the collaborative implicit SLAM to improve consistency and cooperation.
arXiv Detail & Related papers (2023-11-14T09:17:15Z) - Binarized Spectral Compressive Imaging [59.18636040850608]
Existing deep learning models for hyperspectral image (HSI) reconstruction achieve good performance but require powerful hardwares with enormous memory and computational resources.
We propose a novel method, Binarized Spectral-Redistribution Network (BiSRNet)
BiSRNet is derived by using the proposed techniques to binarize the base model.
arXiv Detail & Related papers (2023-05-17T15:36:08Z) - Spelunking the Deep: Guaranteed Queries for General Neural Implicit
Surfaces [35.438964954948574]
This work presents a new approach to perform queries directly on general neural implicit functions for a wide range of existing architectures.
Our key tool is the application of range analysis to neural networks, using automatic arithmetic rules to bound the output of a network over a region.
We use the resulting bounds to develop queries including ray casting, intersection testing, constructing spatial hierarchies, fast mesh extraction, closest-point evaluation.
arXiv Detail & Related papers (2022-02-05T00:37:08Z) - Neural BRDF Representation and Importance Sampling [79.84316447473873]
We present a compact neural network-based representation of reflectance BRDF data.
We encode BRDFs as lightweight networks, and propose a training scheme with adaptive angular sampling.
We evaluate encoding results on isotropic and anisotropic BRDFs from multiple real-world datasets.
arXiv Detail & Related papers (2021-02-11T12:00:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.