論文の概要: Jointly Training and Pruning CNNs via Learnable Agent Guidance and Alignment
- arxiv url: http://arxiv.org/abs/2403.19490v1
- Date: Thu, 28 Mar 2024 15:22:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 15:54:24.423645
- Title: Jointly Training and Pruning CNNs via Learnable Agent Guidance and Alignment
- Title(参考訳): 学習型エージェント誘導とアライメントによるCNNの連成訓練
- Authors: Alireza Ganjdanesh, Shangqian Gao, Heng Huang,
- Abstract要約: 本稿では,CNNモデルの重みと構造的プーン構造を協調的に学習するための新しい構造的プルーニング手法を提案する。
本手法の中核となる要素は強化学習(RL)エージェントであり,その動作がCNNモデルの階層のプルーニング比を決定する。
我々は,モデルの重みとエージェントのポリシーを反復的に訓練し,共同訓練と刈り取りを行う。
- 参考スコア(独自算出の注目度): 69.33930972652594
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Structural model pruning is a prominent approach used for reducing the computational cost of Convolutional Neural Networks (CNNs) before their deployment on resource-constrained devices. Yet, the majority of proposed ideas require a pretrained model before pruning, which is costly to secure. In this paper, we propose a novel structural pruning approach to jointly learn the weights and structurally prune architectures of CNN models. The core element of our method is a Reinforcement Learning (RL) agent whose actions determine the pruning ratios of the CNN model's layers, and the resulting model's accuracy serves as its reward. We conduct the joint training and pruning by iteratively training the model's weights and the agent's policy, and we regularize the model's weights to align with the selected structure by the agent. The evolving model's weights result in a dynamic reward function for the agent, which prevents using prominent episodic RL methods with stationary environment assumption for our purpose. We address this challenge by designing a mechanism to model the complex changing dynamics of the reward function and provide a representation of it to the RL agent. To do so, we take a learnable embedding for each training epoch and employ a recurrent model to calculate a representation of the changing environment. We train the recurrent model and embeddings using a decoder model to reconstruct observed rewards. Such a design empowers our agent to effectively leverage episodic observations along with the environment representations to learn a proper policy to determine performant sub-networks of the CNN model. Our extensive experiments on CIFAR-10 and ImageNet using ResNets and MobileNets demonstrate the effectiveness of our method.
- Abstract(参考訳): 構造モデルプルーニングは、リソース制約のあるデバイスに展開する前に、畳み込みニューラルネットワーク(CNN)の計算コストを削減するために使われる顕著なアプローチである。
しかし、提案されたアイデアの大部分は、プルーニングの前に事前訓練されたモデルを必要とする。
本稿では,CNNモデルの重みと構造的不規則構造を協調的に学習するための新しい構造解析手法を提案する。
提案手法のコア要素は,CNNモデルのレイヤのプルーニング比を決定づける強化学習(Reinforcement Learning, RL)エージェントであり,得られたモデルの精度がその報奨となる。
我々は,モデルウェイトとエージェントのポリシーを反復的にトレーニングし,モデルウェイトを調整し,エージェントによって選択された構造と整合させる。
進化するモデルの重みはエージェントに動的報酬関数をもたらすため、我々の目的のために静止環境を仮定した顕著な漸進的RL法を使用できない。
我々は、報酬関数の複雑な変化ダイナミクスをモデル化する機構を設計し、それをRLエージェントに表現することで、この問題に対処する。
そのために,学習可能な組込みを各学習エポックに適用し,反復モデルを用いて変化環境の表現を計算する。
我々は、観測された報酬を再構成するためにデコーダモデルを用いて繰り返しモデルと埋め込みを訓練する。
このような設計により,CNNモデルの性能的サブネットワークを決定するための適切なポリシーを学習するために,環境表現とともにエピソード観測を効果的に活用することが可能になる。
ResNets と MobileNets を用いた CIFAR-10 と ImageNet に関する広範な実験により,提案手法の有効性が示された。
関連論文リスト
- Transferable Post-training via Inverse Value Learning [83.75002867411263]
別個のニューラルネットワーク(すなわち値ネットワーク)を用いた後学習におけるロジットレベルのモデリング変更を提案する。
このネットワークをデモを使って小さなベースモデルでトレーニングした後、推論中に他のトレーニング済みモデルとシームレスに統合することができる。
得られた値ネットワークは、パラメータサイズの異なる事前学習されたモデル間で広い転送性を有することを示す。
論文 参考訳(メタデータ) (2024-10-28T13:48:43Z) - Harnessing Neural Unit Dynamics for Effective and Scalable Class-Incremental Learning [38.09011520275557]
クラスインクリメンタルラーニング(Class-incremental Learning, CIL)は、古いクラスを忘れずに、非定常データストリームから新しいクラスを学ぶためのモデルをトレーニングすることを目的としている。
本稿では、ニューラルネットワークの動作をCILに適応させるニューラルネットワークユニットダイナミクスを調整し、新しい種類のコネクショナリストモデルを提案する。
論文 参考訳(メタデータ) (2024-06-04T15:47:03Z) - RePo: Resilient Model-Based Reinforcement Learning by Regularizing
Posterior Predictability [25.943330238941602]
本稿では,視覚モデルに基づくRL法を提案する。
我々の訓練目的は、表現が力学と報酬を最大限に予測することを奨励する。
我々の取り組みは、モデルベースのRLを動的で多様なドメインのための実用的で有用なツールにするためのステップです。
論文 参考訳(メタデータ) (2023-08-31T18:43:04Z) - ZhiJian: A Unifying and Rapidly Deployable Toolbox for Pre-trained Model
Reuse [59.500060790983994]
本稿では、PyTorchバックエンドを利用して、モデル再利用のための包括的でユーザフレンドリなツールボックスであるZhiJianを紹介する。
ZhiJianは、PTMによるターゲットアーキテクチャ構築、PTMによるターゲットモデルチューニング、およびPTMに基づく推論を含む、モデル再利用に関するさまざまな視点を統一する新しいパラダイムを提示している。
論文 参考訳(メタデータ) (2023-08-17T19:12:13Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
ビジョンファウンデーションモデルは、非常に大きなモデルキャパシティと幅広いトレーニングデータから恩恵を受け、印象的なパワーを示す。
しかし、実際には、下流のシナリオは限られた計算資源や効率上の考慮のため、小さなモデルしかサポートできない。
これは、ファンデーションモデルの現実的な応用に重要な課題をもたらします。
論文 参考訳(メタデータ) (2023-04-05T07:28:33Z) - Re-parameterizing Your Optimizers rather than Architectures [119.08740698936633]
本稿では,モデル固有の事前知識を構造学に取り入れ,汎用モデル(簡易モデル)の学習に使用する新しいパラダイムを提案する。
実装として,モデル固有のハイパーパラメータの集合に従って勾配を変更することによって,事前知識を付加する手法を提案する。
Reprでトレーニングされた単純なモデルに対しては、VGGスタイルのプレーンモデルに注目し、ReprでトレーニングされたそのようなシンプルなモデルがRep-VGGと呼ばれ、最近のよく設計されたモデルと同等に動作することを示す。
論文 参考訳(メタデータ) (2022-05-30T16:55:59Z) - RLFlow: Optimising Neural Network Subgraph Transformation with World
Models [0.0]
本稿では,ニューラルネットワークのアーキテクチャを最適化するためのモデルベースエージェントを提案する。
提案手法は, 共通の畳み込みネットワーク上での最先端技術の性能に適合し, トランスフォーマースタイルのアーキテクチャでは最大5%性能が向上することを示す。
論文 参考訳(メタデータ) (2022-05-03T11:52:54Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
そこで本研究では,対象モデルからより高速に学習するための代用モデルの促進を目的とした,新しい動的代用トレーニング攻撃手法を提案する。
タスク駆動型グラフに基づく構造情報学習の制約を導入し、生成したトレーニングデータの質を向上させる。
論文 参考訳(メタデータ) (2022-04-03T02:29:11Z) - Alternate Model Growth and Pruning for Efficient Training of
Recommendation Systems [7.415129876303651]
モデルプルーニングは、冗長なパラメータを取り除いてディープニューラルネットワークの計算オーバーヘッドを削減する効果的な手法である。
ビッグデータ処理の需要のため、現代のレコメンデーションシステムはモデルキャパシティにとってまだ渇望的です。
トレーニング中の重量を代替して構築し、調整するためのダイナミックなトレーニングスキーム、すなわち、モデルの成長と刈り取りを提案します。
論文 参考訳(メタデータ) (2021-05-04T03:14:30Z) - Efficient Learning of Model Weights via Changing Features During
Training [0.0]
学習中の特徴を動的に変化させる機械学習モデルを提案する。
私たちの主な動機は、トレーニングプロセス中に小さなコンテンツでモデルを更新し、より説明力の少ない機能を大きなプールから新しいものに置き換えることです。
論文 参考訳(メタデータ) (2020-02-21T12:38:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。