論文の概要: Harnessing Neural Unit Dynamics for Effective and Scalable Class-Incremental Learning
- arxiv url: http://arxiv.org/abs/2406.02428v1
- Date: Tue, 4 Jun 2024 15:47:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 15:30:46.800073
- Title: Harnessing Neural Unit Dynamics for Effective and Scalable Class-Incremental Learning
- Title(参考訳): 効果的でスケーラブルなクラスインクリメンタルラーニングのためのニューラルユニットダイナミクスのハーネス化
- Authors: Depeng Li, Tianqi Wang, Junwei Chen, Wei Dai, Zhigang Zeng,
- Abstract要約: クラスインクリメンタルラーニング(Class-incremental Learning, CIL)は、古いクラスを忘れずに、非定常データストリームから新しいクラスを学ぶためのモデルをトレーニングすることを目的としている。
本稿では、ニューラルネットワークの動作をCILに適応させるニューラルネットワークユニットダイナミクスを調整し、新しい種類のコネクショナリストモデルを提案する。
- 参考スコア(独自算出の注目度): 38.09011520275557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Class-incremental learning (CIL) aims to train a model to learn new classes from non-stationary data streams without forgetting old ones. In this paper, we propose a new kind of connectionist model by tailoring neural unit dynamics that adapt the behavior of neural networks for CIL. In each training session, it introduces a supervisory mechanism to guide network expansion whose growth size is compactly commensurate with the intrinsic complexity of a newly arriving task. This constructs a near-minimal network while allowing the model to expand its capacity when cannot sufficiently hold new classes. At inference time, it automatically reactivates the required neural units to retrieve knowledge and leaves the remaining inactivated to prevent interference. We name our model AutoActivator, which is effective and scalable. To gain insights into the neural unit dynamics, we theoretically analyze the model's convergence property via a universal approximation theorem on learning sequential mappings, which is under-explored in the CIL community. Experiments show that our method achieves strong CIL performance in rehearsal-free and minimal-expansion settings with different backbones.
- Abstract(参考訳): クラスインクリメンタルラーニング(Class-incremental Learning, CIL)は、古いクラスを忘れずに、非定常データストリームから新しいクラスを学ぶためのモデルをトレーニングすることを目的としている。
本稿では,ニューラルネットワークの動作をCILに適応させるニューラル・ユニット・ダイナミクスを調整し,新しいタイプのコネクショナリストモデルを提案する。
各トレーニングセッションでは、新たに到着したタスクの本質的な複雑さと、成長サイズがコンパクトに一致したネットワーク拡張を誘導する監督機構を導入する。
これは、モデルが新しいクラスを十分に保持できない場合にキャパシティを拡張しながら、ほぼ最小のネットワークを構築する。
推論時に、知識を取得するために必要な神経ユニットを自動的に再活性化し、干渉を防ぐために残りの非活性化を残します。
当社のモデルであるAutoActivatorは,効率的かつスケーラブルです。
ニューラルネットワークのダイナミクスに関する知見を得るため,CILコミュニティで探索されていない逐次写像の学習に関する普遍近似定理を用いてモデル収束特性を理論的に解析する。
実験により, バックボーンの異なるリハーサルフリー, 最小拡張設定において, 高いCIL性能が得られた。
関連論文リスト
- Self Expanding Convolutional Neural Networks [1.4330085996657045]
本稿では,学習中の畳み込みニューラルネットワーク(CNN)を動的に拡張する新しい手法を提案する。
我々は、単一のモデルを動的に拡張する戦略を採用し、様々な複雑さのレベルでチェックポイントの抽出を容易にする。
論文 参考訳(メタデータ) (2024-01-11T06:22:40Z) - Activity Sparsity Complements Weight Sparsity for Efficient RNN
Inference [2.0822643340897273]
本研究では、繰り返しニューラルネットワークモデルにおいて、活動空間がパラメータ空間と乗算的に構成可能であることを示す。
私たちはPenn Treebank言語モデリングタスクで60ドル以下の難易度を維持しながら、最大20ドルまで計算の削減を実現しています。
論文 参考訳(メタデータ) (2023-11-13T08:18:44Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
本稿では,2つの補完学習サブネットワークス間のシナジーを通じて連続的に学習するリハーサルフリーなCILアプローチを提案する。
提案手法は, 精度向上, メモリコスト, トレーニング効率, タスク順序など, 最先端手法と競合する結果が得られる。
論文 参考訳(メタデータ) (2023-06-21T01:43:25Z) - Sparse Modular Activation for Efficient Sequence Modeling [94.11125833685583]
線形状態空間モデルと自己アテンション機構を組み合わせた最近のモデルでは、様々なシーケンスモデリングタスクにおいて顕著な結果が示されている。
現在のアプローチでは、アテンションモジュールを静的かつ均一に入力シーケンスのすべての要素に適用し、最適以下の品質効率のトレードオフをもたらす。
SMA(Sparse Modular Activation)は,ニューラルネットワークが配列要素のサブモジュールを異なる方法でスパースに活性化する機構である。
論文 参考訳(メタデータ) (2023-06-19T23:10:02Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - FOSTER: Feature Boosting and Compression for Class-Incremental Learning [52.603520403933985]
ディープニューラルネットワークは、新しいカテゴリーを学ぶ際に破滅的な忘れ方に悩まされる。
本稿では,新たなカテゴリを適応的に学習するためのモデルとして,新しい2段階学習パラダイムFOSTERを提案する。
論文 参考訳(メタデータ) (2022-04-10T11:38:33Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
本稿では,マルチスケール学習を対象とする,漸進的に訓練された再帰的アーキテクチャを提案する。
隠れた状態を異なるモジュールに分割することで、シンプルなRNNのアーキテクチャを拡張する方法を示す。
新しいモジュールがモデルに反復的に追加され、徐々に長い依存関係を学習するトレーニングアルゴリズムについて議論する。
論文 参考訳(メタデータ) (2020-06-29T08:35:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。