論文の概要: Segmentation tool for images of cracks
- arxiv url: http://arxiv.org/abs/2403.19492v1
- Date: Thu, 28 Mar 2024 15:23:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 15:54:24.420763
- Title: Segmentation tool for images of cracks
- Title(参考訳): き裂画像のセグメンテーションツール
- Authors: Andrii Kompanets, Remco Duits, Davide Leonetti, Nicky van den Berg, H. H., Snijder,
- Abstract要約: 本稿では,画像上のひび割れを手動で分割しやすくする半自動き裂分割ツールを提案する。
また、ひび割れの形状を測定するためにも用いられる。
提案手法は完全自動手法より優れており,手動データアノテーションの適切な代替となる可能性を示している。
- 参考スコア(独自算出の注目度): 0.16492989697868887
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Safety-critical infrastructures, such as bridges, are periodically inspected to check for existing damage, such as fatigue cracks and corrosion, and to guarantee the safe use of the infrastructure. Visual inspection is the most frequent type of general inspection, despite the fact that its detection capability is rather limited, especially for fatigue cracks. Machine learning algorithms can be used for augmenting the capability of classical visual inspection of bridge structures, however, the implementation of such an algorithm requires a massive annotated training dataset, which is time-consuming to produce. This paper proposes a semi-automatic crack segmentation tool that eases the manual segmentation of cracks on images needed to create a training dataset for a machine learning algorithm. Also, it can be used to measure the geometry of the crack. This tool makes use of an image processing algorithm, which was initially developed for the analysis of vascular systems on retinal images. The algorithm relies on a multi-orientation wavelet transform, which is applied to the image to construct the so-called "orientation scores", i.e. a modified version of the image. Afterwards, the filtered orientation scores are used to formulate an optimal path problem that identifies the crack. The globally optimal path between manually selected crack endpoints is computed, using a state-of-the-art geometric tracking method. The pixel-wise segmentation is done afterwards using the obtained crack path. The proposed method outperforms fully automatic methods and shows potential to be an adequate alternative to the manual data annotation.
- Abstract(参考訳): 橋などの安全クリティカルなインフラは定期的に検査され、疲労き裂や腐食などの既存の損傷をチェックし、インフラの安全使用を保証する。
視覚検査は、特に疲労き裂に対して、その検出能力がかなり限られているにもかかわらず、最も頻繁に行われる一般的な検査である。
機械学習アルゴリズムは、橋梁構造物の古典的な視覚検査能力を高めるために使用できるが、そのようなアルゴリズムの実装には大量の注釈付きトレーニングデータセットが必要である。
本稿では,機械学習アルゴリズムのトレーニングデータセット作成に必要な画像のクラックを手動で分割する,半自動クラック分割ツールを提案する。
また、ひび割れの形状を測定するためにも用いられる。
このツールは、網膜画像上の血管系の解析のために最初に開発された画像処理アルゴリズムを利用する。
このアルゴリズムはマルチオリエンテーション・ウェーブレット変換(英語版)に依存しており、この変換は画像に応用され、いわゆる「オリエンテーションスコア(orientation scores)」、すなわち画像の修正版を構成する。
その後、フィルタされた配向スコアを用いて、ひび割れを識別する最適経路問題を定式化する。
手動で選択したクラックエンドポイント間の最適経路を,最先端の幾何追跡法を用いて計算する。
その後、得られたクラックパスを用いて画素ワイドセグメンテーションを行う。
提案手法は完全自動手法より優れており,手動データアノテーションの適切な代替となる可能性を示している。
関連論文リスト
- Deep Learning-Based Fatigue Cracks Detection in Bridge Girders using Feature Pyramid Networks [8.59780173800845]
本研究では,橋梁の鋼箱桁のひび割れ情報を含む高分解能画像からの自動き裂分割手法を提案する。
亀裂のマルチスケールの特徴を考慮し, 亀裂検出のための特徴ピラミッドネットワーク(FPN)の畳み込みニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-10-28T16:16:15Z) - UP-CrackNet: Unsupervised Pixel-Wise Road Crack Detection via Adversarial Image Restoration [23.71017765426465]
本稿では,UP-CrackNet と呼ばれる非教師付き画素単位の道路亀裂検出ネットワークを提案する。
提案手法はまずマルチスケールの正方形マスクを生成し,特定領域を除去して無害道路画像をランダムに選別する。
生成的敵ネットワークは、周辺未破壊領域から学習した意味的文脈を活用することにより、腐敗した領域を復元するように訓練される。
論文 参考訳(メタデータ) (2024-01-28T12:51:01Z) - Robotic surface exploration with vision and tactile sensing for cracks
detection and characterisation [7.627217550282436]
本稿では,光ファイバーを用いた視覚・触覚解析に基づくクラックの局所化と検出のための新しいアルゴリズムを提案する。
ファイバー光学に基づく指型センサを用いて、データ取得を行い、分析と実験のためのデータ収集を行う。
論文 参考訳(メタデータ) (2023-07-13T14:50:38Z) - Linear Object Detection in Document Images using Multiple Object
Tracking [58.720142291102135]
線形オブジェクトは文書構造に関する実質的な情報を伝達する。
多くのアプローチはベクトル表現を復元できるが、1994年に導入された1つのクローズドソース技術のみである。
複数オブジェクト追跡を用いた文書画像中の線形オブジェクトの正確なインスタンスセグメンテーションのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-26T14:22:03Z) - Unsupervised crack detection on complex stone masonry surfaces [0.0]
本稿では,石造石垣のき裂検出手法について述べる。
提案手法では, RGB (Red Green Blue) 画像パッチの非教師付き異常検出問題として, き裂検出にアプローチする。
論文 参考訳(メタデータ) (2023-03-31T12:07:23Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
劣化した低解像度画像中の物体を検出するための,新しい自己教師型フレームワークを提案する。
本手法は, 既存手法と比較して, 異変劣化状況に直面する場合に比べ, 優れた性能を示した。
論文 参考訳(メタデータ) (2022-08-05T09:36:13Z) - An End-to-End Approach for Seam Carving Detection using Deep Neural
Networks [0.0]
シーム・カービング(Seam Carving)は、画像形状ではなく、その内容に基づいて画像の縮小と拡大の両面を縮小する計算方法である。
本稿では,自動シーム彫刻検出の課題に対処するためのエンドツーエンドアプローチを提案する。
論文 参考訳(メタデータ) (2022-03-05T12:53:55Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
通常のトレーニングデータのみを用いて異常検知器を構築するためのフレームワークを提案する。
まず、自己教師付き深層表現を学習し、学習した表現の上に生成的1クラス分類器を構築する。
MVTec異常検出データセットに関する実証研究は,提案アルゴリズムが実世界の様々な欠陥を検出可能であることを実証している。
論文 参考訳(メタデータ) (2021-04-08T19:04:55Z) - Image Restoration by Deep Projected GSURE [115.57142046076164]
Ill-posed inverse problem は、デブロアリングや超解像など、多くの画像処理アプリケーションに現れる。
本稿では,一般化されたSteinUnbiased Risk Estimator(GSURE)の「投影変換」とCNNによる潜在画像のパラメータ化を含む損失関数の最小化に基づく,新たな画像復元フレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-04T08:52:46Z) - Refined Plane Segmentation for Cuboid-Shaped Objects by Leveraging Edge
Detection [63.942632088208505]
本稿では,セグメント化された平面マスクを画像に検出されたエッジと整列するための後処理アルゴリズムを提案する。
これにより、立方体形状の物体に制限を加えながら、最先端のアプローチの精度を高めることができます。
論文 参考訳(メタデータ) (2020-03-28T18:51:43Z) - Image Matching across Wide Baselines: From Paper to Practice [80.9424750998559]
局所的な特徴とロバストな推定アルゴリズムの包括的なベンチマークを導入する。
パイプラインのモジュール構造は、さまざまなメソッドの容易な統合、構成、組み合わせを可能にします。
適切な設定で、古典的な解決策は依然として芸術の知覚された状態を上回る可能性があることを示す。
論文 参考訳(メタデータ) (2020-03-03T15:20:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。