論文の概要: Deep Learning-Based Fatigue Cracks Detection in Bridge Girders using Feature Pyramid Networks
- arxiv url: http://arxiv.org/abs/2410.21175v1
- Date: Mon, 28 Oct 2024 16:16:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:17:07.410223
- Title: Deep Learning-Based Fatigue Cracks Detection in Bridge Girders using Feature Pyramid Networks
- Title(参考訳): 特徴ピラミッドネットワークを用いた橋梁桁の深層学習による疲労き裂検出
- Authors: Jiawei Zhang, Jun Li, Reachsak Ly, Yunyi Liu, Jiangpeng Shu,
- Abstract要約: 本研究では,橋梁の鋼箱桁のひび割れ情報を含む高分解能画像からの自動き裂分割手法を提案する。
亀裂のマルチスケールの特徴を考慮し, 亀裂検出のための特徴ピラミッドネットワーク(FPN)の畳み込みニューラルネットワークアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 8.59780173800845
- License:
- Abstract: For structural health monitoring, continuous and automatic crack detection has been a challenging problem. This study is conducted to propose a framework of automatic crack segmentation from high-resolution images containing crack information about steel box girders of bridges. Considering the multi-scale feature of cracks, convolutional neural network architecture of Feature Pyramid Networks (FPN) for crack detection is proposed. As for input, 120 raw images are processed via two approaches (shrinking the size of images and splitting images into sub-images). Then, models with the proposed structure of FPN for crack detection are developed. The result shows all developed models can automatically detect the cracks at the raw images. By shrinking the images, the computation efficiency is improved without decreasing accuracy. Because of the separable characteristic of crack, models using the splitting method provide more accurate crack segmentations than models using the resizing method. Therefore, for high-resolution images, the FPN structure coupled with the splitting method is an promising solution for the crack segmentation and detection.
- Abstract(参考訳): 構造的健康モニタリングでは,連続的および自動き裂検出が課題となっている。
本研究は,橋梁の鋼箱桁のひび割れ情報を含む高分解能画像から自動き裂分割の枠組みを提案する。
亀裂のマルチスケールの特徴を考慮し, 亀裂検出のための特徴ピラミッドネットワーク(FPN)の畳み込みニューラルネットワークアーキテクチャを提案する。
入力については、120個の原画像が2つのアプローチで処理される(画像のサイズを縮小し、画像をサブイメージに分割する)。
そして, ひび割れ検出のためのFPNの構造モデルを開発した。
その結果、開発されたすべてのモデルが生画像のひび割れを自動的に検出できることがわかった。
画像を縮小することにより、精度を低下させることなく計算効率が向上する。
クラックの分離可能な特性のため, 分割法を用いたモデルの方が, リサイズ法を用いたモデルよりも正確なクラックセグメンテーションを実現している。
したがって、高分解能画像の場合、分割法と結合したFPN構造はクラックのセグメンテーションと検出に有望な解である。
関連論文リスト
- Segmentation tool for images of cracks [0.16492989697868887]
本稿では,画像上のひび割れを手動で分割しやすくする半自動き裂分割ツールを提案する。
また、ひび割れの形状を測定するためにも用いられる。
提案手法は完全自動手法より優れており,手動データアノテーションの適切な代替となる可能性を示している。
論文 参考訳(メタデータ) (2024-03-28T15:23:52Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - CrackCLF: Automatic Pavement Crack Detection based on Closed-Loop
Feedback [14.986335013488643]
CrackCLFはニューラルネットワークモデルであり、自分でエラーを修正することを学習する。
提案されたCLFは、プラグアンドプレイモジュールとして定義することができ、異なるニューラルネットワークモデルに組み込んでパフォーマンスを改善することができる。
論文 参考訳(メタデータ) (2023-11-20T14:52:48Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - PAIF: Perception-Aware Infrared-Visible Image Fusion for Attack-Tolerant
Semantic Segmentation [50.556961575275345]
対向シーンにおけるセグメンテーションの堅牢性を促進するための認識認識型融合フレームワークを提案する。
我々は,先進の競争相手に比べて15.3% mIOUの利得で,ロバスト性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-08-08T01:55:44Z) - Hierarchical Convolutional Neural Network with Feature Preservation and
Autotuned Thresholding for Crack Detection [5.735035463793008]
ドローンの画像はインフラ表面の欠陥の自動検査にますます使われている。
本稿では,階層型畳み込みニューラルネットワークを用いた深層学習手法を提案する。
提案手法は, 道路, 橋, 舗装の表面ひび割れの同定に応用されている。
論文 参考訳(メタデータ) (2021-04-21T13:07:58Z) - MuCAN: Multi-Correspondence Aggregation Network for Video
Super-Resolution [63.02785017714131]
ビデオ超解像(VSR)は、複数の低解像度フレームを使用して、各フレームに対して高解像度の予測を生成することを目的としている。
フレーム間およびフレーム内は、時間的および空間的情報を利用するための鍵となるソースである。
VSRのための効果的なマルチ対応アグリゲーションネットワーク(MuCAN)を構築した。
論文 参考訳(メタデータ) (2020-07-23T05:41:27Z) - Automatic Crack Detection on Road Pavements Using Encoder Decoder
Architecture [9.34360241512198]
提案アルゴリズムは,階層型特徴学習と拡張畳み込みを用いたエンコーダデコーダアーキテクチャ,U-階層型拡張ネットワーク (U-HDN) を提案する。
複数のコンテキスト情報を持つき裂特性は、自動的に学習し、エンドツーエンドのき裂検出を行うことができる。
論文 参考訳(メタデータ) (2020-07-01T13:32:23Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z) - Learning End-to-End Lossy Image Compression: A Benchmark [90.35363142246806]
まず,学習した画像の圧縮方法に関する総合的な文献調査を行う。
本稿では,最先端の学習画像圧縮手法のマイルストーンについて述べるとともに,既存の幅広い作品について概観し,その歴史的開発ルートについて考察する。
エントロピー推定と信号再構成のための粗大な超高次モデルを導入することにより、速度歪み性能の向上を実現する。
論文 参考訳(メタデータ) (2020-02-10T13:13:43Z) - Ensemble of Deep Convolutional Neural Networks for Automatic Pavement
Crack Detection and Measurement [9.34360241512198]
小さな亀裂の構造を特定するために、畳み込みニューラルネットワークのアンサンブルが使用された。
き裂測定には, 亀裂の種類によって, ひび割れの長さと幅を測定できる。
論文 参考訳(メタデータ) (2020-02-08T22:15:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。