論文の概要: Instance-Adaptive and Geometric-Aware Keypoint Learning for Category-Level 6D Object Pose Estimation
- arxiv url: http://arxiv.org/abs/2403.19527v1
- Date: Thu, 28 Mar 2024 16:02:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 15:34:50.626729
- Title: Instance-Adaptive and Geometric-Aware Keypoint Learning for Category-Level 6D Object Pose Estimation
- Title(参考訳): カテゴリーレベル6次元オブジェクト位置推定のためのインスタンス適応型および幾何学的キーポイント学習
- Authors: Xiao Lin, Wenfei Yang, Yuan Gao, Tianzhu Zhang,
- Abstract要約: カテゴリーレベルの6Dオブジェクトのポーズ推定は、特定のカテゴリ内の見えないインスタンスの回転、翻訳、サイズを推定することを目的としている。
カテゴリレベルの6次元オブジェクトポーズ推定(AG-Pose)のための新しいインスタンス適応型および幾何学的キーポイント学習法を提案する。
提案した AG-Pose は、カテゴリー固有の形状の先行を伴わず、最先端の手法よりも大きなマージンで性能を向上する。
- 参考スコア(独自算出の注目度): 38.03793706479096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Category-level 6D object pose estimation aims to estimate the rotation, translation and size of unseen instances within specific categories. In this area, dense correspondence-based methods have achieved leading performance. However, they do not explicitly consider the local and global geometric information of different instances, resulting in poor generalization ability to unseen instances with significant shape variations. To deal with this problem, we propose a novel Instance-Adaptive and Geometric-Aware Keypoint Learning method for category-level 6D object pose estimation (AG-Pose), which includes two key designs: (1) The first design is an Instance-Adaptive Keypoint Detection module, which can adaptively detect a set of sparse keypoints for various instances to represent their geometric structures. (2) The second design is a Geometric-Aware Feature Aggregation module, which can efficiently integrate the local and global geometric information into keypoint features. These two modules can work together to establish robust keypoint-level correspondences for unseen instances, thus enhancing the generalization ability of the model.Experimental results on CAMERA25 and REAL275 datasets show that the proposed AG-Pose outperforms state-of-the-art methods by a large margin without category-specific shape priors.
- Abstract(参考訳): カテゴリーレベルの6Dオブジェクトのポーズ推定は、特定のカテゴリ内の見えないインスタンスの回転、翻訳、サイズを推定することを目的としている。
この領域では、高密度対応に基づく手法が先進的な性能を実現している。
しかし、それらは異なるインスタンスの局所的および大域的幾何学的情報を明示的に考慮せず、結果として、大きな形状のバリエーションを持つインスタンスを発見できないような一般化能力は乏しい。
この問題に対処するため,カテゴリレベルの6次元オブジェクトポーズ推定(AG-Pose)のための新しいインスタンス適応型および幾何学的キーポイント学習法を提案し,(1)第一の設計は,各インスタンスのスパースキーポイントの集合を適応的に検出し,幾何学的構造を表現するためのインスタンス適応キーポイント検出モジュールである。
2)2つ目の設計は幾何学的特徴集約モジュールであり,局所的およびグローバルな幾何学的情報をキーポイント特徴に効率的に統合することができる。
CAMERA25 と REAL275 データセットによる実験結果から,提案した AG-Pose は,カテゴリ固有の形状の先行を伴わずに,最先端の手法よりも高い性能を示した。
関連論文リスト
- SecondPose: SE(3)-Consistent Dual-Stream Feature Fusion for Category-Level Pose Estimation [79.12683101131368]
カテゴリーレベルのオブジェクトのポーズ推定は、既知のカテゴリから6次元のポーズと3次元の大きさを予測することを目的としている。
我々は、DINOv2のセマンティックカテゴリにオブジェクト固有の幾何学的特徴を統合する新しいアプローチであるSecondPoseを提案する。
論文 参考訳(メタデータ) (2023-11-18T17:14:07Z) - SOCS: Semantically-aware Object Coordinate Space for Category-Level 6D
Object Pose Estimation under Large Shape Variations [12.348551686086255]
カテゴリーレベルの6Dポーズ推定に対する学習に基づくほとんどのアプローチは、正規化オブジェクト座標空間(NOCS)を中心に設計されている。
本稿では,意味的に意味のある対応を持つキーポイントのスパースセットによって導かれるオブジェクトをワープ・アンド・アライメントすることで,セマンティック・アウェアなオブジェクトコーディネート・スペース(SOCS)を提案する。
論文 参考訳(メタデータ) (2023-03-18T06:34:16Z) - Generative Category-Level Shape and Pose Estimation with Semantic
Primitives [27.692997522812615]
本稿では,1枚のRGB-D画像からカテゴリレベルのオブジェクト形状とポーズ推定を行う新しいフレームワークを提案する。
カテゴリ内変動に対処するために、様々な形状を統一された潜在空間にエンコードするセマンティックプリミティブ表現を採用する。
提案手法は,実世界のデータセットにおいて,SOTAのポーズ推定性能とより優れた一般化を実現する。
論文 参考訳(メタデータ) (2022-10-03T17:51:54Z) - Pose for Everything: Towards Category-Agnostic Pose Estimation [93.07415325374761]
Category-Agnostic Pose Estimation (CAPE) は、キーポイント定義を持つ少数のサンプルのみを与えられた任意の種類のオブジェクトのポーズを検出することができるポーズ推定モデルを作成することを目的としている。
異なるキーポイント間のインタラクションと、サポートとクエリイメージの関係をキャプチャするために、トランスフォーマーベースのキーポイントインタラクションモジュール(KIM)を提案する。
また、20K以上のインスタンスを含む100のオブジェクトカテゴリの2次元ポーズデータセットであるMP-100データセットを導入し、CAPEアルゴリズムの開発に適している。
論文 参考訳(メタデータ) (2022-07-21T09:40:54Z) - On Hyperbolic Embeddings in 2D Object Detection [76.12912000278322]
双曲幾何学が対象分類空間の基盤構造に適合するかどうかを考察する。
2段階、キーポイントベース、トランスフォーマーベースオブジェクト検出アーキテクチャに双曲型分類器を組み込む。
分類空間の構造に現れる分類階級階層を観察し、分類誤差を低くし、全体的な対象検出性能を高める。
論文 参考訳(メタデータ) (2022-03-15T16:43:40Z) - GPV-Pose: Category-level Object Pose Estimation via Geometry-guided
Point-wise Voting [103.74918834553249]
GPV-Poseはロバストなカテゴリーレベルのポーズ推定のための新しいフレームワークである。
幾何学的洞察を利用して、カテゴリーレベルのポーズ感応的特徴の学習を強化する。
一般的な公開ベンチマークにおいて、最先端の競合相手に優れた結果をもたらす。
論文 参考訳(メタデータ) (2022-03-15T13:58:50Z) - Single-stage Keypoint-based Category-level Object Pose Estimation from
an RGB Image [27.234658117816103]
カテゴリレベルのオブジェクトポーズ推定のための,単一段階のキーポイントに基づくアプローチを提案する。
提案ネットワークは2次元オブジェクト検出を行い、2次元キーポイントを検出し、6-DoFのポーズを推定し、相対的に有界な立方体次元を回帰する。
我々は,3次元IoU測定値における最先端の手法よりも優れた,挑戦的なObjectronベンチマークに関する広範囲な実験を行った。
論文 参考訳(メタデータ) (2021-09-13T17:55:00Z) - Self-supervised Geometric Perception [96.89966337518854]
自己教師付き幾何知覚(self-supervised geometric perception)は、基底幾何モデルラベルなしで対応マッチングのための特徴記述子を学ぶためのフレームワークである。
また,SGPは,地上トラスラベルを用いて訓練した教師付きオークルよりも同等か優れる最先端性能を達成できることを示す。
論文 参考訳(メタデータ) (2021-03-04T15:34:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。