Lamarckian Inheritance Improves Robot Evolution in Dynamic Environments
- URL: http://arxiv.org/abs/2403.19545v1
- Date: Thu, 28 Mar 2024 16:27:20 GMT
- Title: Lamarckian Inheritance Improves Robot Evolution in Dynamic Environments
- Authors: Jie Luo, Karine Miras, Carlo Longhi, Oliver Weissl, Agoston E. Eiben,
- Abstract summary: This study explores the integration of Lamarckian system into evolutionary robotics (ER)
By adopting Lamarckian principles, robots inherit learned traits, alongside Darwinian learning without inheritance, we investigate adaptation in dynamic settings.
Our research, conducted in six distinct environmental setups, demonstrates that Lamarckian systems outperform Darwinian ones in adaptability and efficiency.
- Score: 2.111420195774799
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores the integration of Lamarckian system into evolutionary robotics (ER), comparing it with the traditional Darwinian model across various environments. By adopting Lamarckian principles, where robots inherit learned traits, alongside Darwinian learning without inheritance, we investigate adaptation in dynamic settings. Our research, conducted in six distinct environmental setups, demonstrates that Lamarckian systems outperform Darwinian ones in adaptability and efficiency, particularly in challenging conditions. Our analysis highlights the critical role of the interplay between controller \& morphological evolution and environment adaptation, with parent-offspring similarities and newborn \&survivors before and after learning providing insights into the effectiveness of trait inheritance. Our findings suggest Lamarckian principles could significantly advance autonomous system design, highlighting the potential for more adaptable and robust robotic solutions in complex, real-world applications. These theoretical insights were validated using real physical robots, bridging the gap between simulation and practical application.
Related papers
- Cognitive Evolutionary Learning to Select Feature Interactions for Recommender Systems [59.117526206317116]
We show that CELL can adaptively evolve into different models for different tasks and data.
Experiments on four real-world datasets demonstrate that CELL significantly outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-05-29T02:35:23Z) - DARLEI: Deep Accelerated Reinforcement Learning with Evolutionary
Intelligence [77.78795329701367]
We present DARLEI, a framework that combines evolutionary algorithms with parallelized reinforcement learning.
We characterize DARLEI's performance under various conditions, revealing factors impacting diversity of evolved morphologies.
We hope to extend DARLEI in future work to include interactions between diverse morphologies in richer environments.
arXiv Detail & Related papers (2023-12-08T16:51:10Z) - Role of Morphogenetic Competency on Evolution [0.0]
In Evolutionary Computation, the inverse relationship (impact of intelligence on evolution) is approached from the perspective of organism level behaviour.
We focus on the intelligence of a minimal model of a system navigating anatomical morphospace.
We evolve populations of artificial embryos using a standard genetic algorithm in silico.
arXiv Detail & Related papers (2023-10-13T11:58:18Z) - Lamarck's Revenge: Inheritance of Learned Traits Can Make Robot
Evolution Better [2.884244918665901]
We investigate the question What if the 18th-century biologist Lamarck was not completely wrong and individual traits learned during a lifetime could be passed on to offspring through inheritance?''
Within this framework, we compare a Lamarckian system, where learned bits of the brain are inheritable, with a Darwinian system, where they are not.
arXiv Detail & Related papers (2023-09-22T15:29:15Z) - The Effect of Epigenetic Blocking on Dynamic Multi-Objective
Optimisation Problems [1.4502611532302039]
Epigenetic mechanisms allow quick non- or partially-genetic adaptations to environmental changes.
This paper asks if the advantages that epigenetic inheritance provide in the natural world are replicated in dynamic multi-objective problems.
arXiv Detail & Related papers (2022-11-25T16:33:05Z) - The Introspective Agent: Interdependence of Strategy, Physiology, and
Sensing for Embodied Agents [51.94554095091305]
We argue for an introspective agent, which considers its own abilities in the context of its environment.
Just as in nature, we hope to reframe strategy as one tool, among many, to succeed in an environment.
arXiv Detail & Related papers (2022-01-02T20:14:01Z) - Heritability in Morphological Robot Evolution [2.7402733069181]
We introduce the biological notion of heritability, which captures the amount of phenotypic variation caused by genotypic variation.
In our analysis we measure the heritability on the first generation of robots evolved from two different encodings.
We show how heritability can be a useful tool to better understand the relationship between genotypes and phenotypes.
arXiv Detail & Related papers (2021-10-21T14:58:17Z) - Epigenetic opportunities for Evolutionary Computation [0.0]
Evolutionary Computation is a group of biologically inspired algorithms used to solve complex optimisation problems.
It can be split into Evolutionary Algorithms, which take inspiration from genetic inheritance, and Swarm Intelligence algorithms, that take inspiration from cultural inheritance.
This paper breaks down successful bio-inspired algorithms under a contemporary biological framework based on the Extended Evolutionary Synthesis.
arXiv Detail & Related papers (2021-08-10T09:44:53Z) - Embodied Intelligence via Learning and Evolution [92.26791530545479]
We show that environmental complexity fosters the evolution of morphological intelligence.
We also show that evolution rapidly selects morphologies that learn faster.
Our experiments suggest a mechanistic basis for both the Baldwin effect and the emergence of morphological intelligence.
arXiv Detail & Related papers (2021-02-03T18:58:31Z) - Emergent Hand Morphology and Control from Optimizing Robust Grasps of
Diverse Objects [63.89096733478149]
We introduce a data-driven approach where effective hand designs naturally emerge for the purpose of grasping diverse objects.
We develop a novel Bayesian Optimization algorithm that efficiently co-designs the morphology and grasping skills jointly.
We demonstrate the effectiveness of our approach in discovering robust and cost-efficient hand morphologies for grasping novel objects.
arXiv Detail & Related papers (2020-12-22T17:52:29Z) - RoboTHOR: An Open Simulation-to-Real Embodied AI Platform [56.50243383294621]
We introduce RoboTHOR to democratize research in interactive and embodied visual AI.
We show there exists a significant gap between the performance of models trained in simulation when they are tested in both simulations and their carefully constructed physical analogs.
arXiv Detail & Related papers (2020-04-14T20:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.